EE363 Winter 2008-09

Lecture 12
Basic Lyapunov theory

e stability

e positive definite functions

e global Lyapunov stability theorems
e Lasalle’s theorem

e converse Lyapunov theorems

e finding Lyapunov functions
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Some stability definitions

we consider nonlinear time-invariant system & = f(x), where f : R — R"
a point z. € R" is an equilibrium point of the system if f(xz.) =0

T is an equilibrium point <= x(t) = x. is a trajectory

suppose . is an equilibrium point

e system is globally asymptotically stable (G.A.S.) if for every trajectory

x(t), we have z(t) — z, as t — o0
(implies x. is the unique equilibrium point)

e system is locally asymptotically stable (L.A.S.) near or at z. if there is
an R>0s.t. ||2(0) —z.|| < R= 2(t) >z, ast — 0

Basic Lyapunov theory 12-2



e often we change coordinates so that x. = 0 (i.e., we use & = x — x.)

e a linear system & = Ax is G.A.S. (with . = 0) & R\;(A) <0,
1=1,...,n

e a linear system & = Ax is L.A.S. (near . = 0) & R\;(A) <0,
1=1,...,n
(so for linear systems, L.A.S. < G.A.S.)

e there are many other variants on stability (e.g., stability, uniform
stability, exponential stability, . . . )

e when f is nonlinear, establishing any kind of stability is usually very
difficult
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Energy and dissipation functions
consider nonlinear system & = f(x), and function V' : R — R
we define V: R” — R as V(z) = VV(2)T f(2)

V(2) gives %V(m(t)) when z = z(t), £ = f(x)

we can think of V' as generalized energy function, and —V as the
associated generalized dissipation function
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Positive definite functions

a function V : R™ — R is positive definite (PD) if

e V(z) >0 forall z
e V(z)=0ifand only if 2 =0

e all sublevel sets of V' are bounded

last condition equivalent to V(z) — o0 as z — o0

example: V(z) = 21’ Pz, with P = P?, is PD if and only if P > 0
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Lyapunov theory

Lyapunov theory is used to make conclusions about trajectories of a system
t = f(z) (e.g., G.A.S.) without finding the trajectories
(i.e., solving the differential equation)

a typical Lyapunov theorem has the form:

e if there exists a function V : R” — R that satisfies some conditions on
Vand V

e then, trajectories of system satisfy some property

if such a function V exists we call it a Lyapunov function (that proves the
property holds for the trajectories)

Lyapunov function V' can be thought of as generalized energy function for
system
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A Lyapunov boundedness theorem

suppose there is a function V' that satisfies

e all sublevel sets of V' are bounded

o V(z) < 0 for all 2z

then, all trajectories are bounded, i.e., for each trajectory x there is an R
such that ||x(¢)|| < R for all t > 0

in this case, V is called a Lyapunov function (for the system) that proves
the trajectories are bounded
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to prove it, we note that for any trajectory x

Viz(t)) = V(x(0)) —|—/O V(ZE(T)) dr < V(xz(0))

so the whole trajectory lies in {z | V(z) < V(x(0))}, which is bounded

also shows: every sublevel set {z | V(2) < a} is invariant
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A Lyapunov global asymptotic stability theorem

suppose there is a function V such that

e |/ is positive definite

e V(z)<0forall z£0, V(0) =0

then, every trajectory of & = f(x) converges to zero as t — oo
(i.e., the system is globally asymptotically stable)

Intepretation:

e |/ is positive definite generalized energy function

e energy is always dissipated, except at 0
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Proof

suppose trajectory x(t) does not converge to zero.
V(x(t)) is decreasing and nonnegative, so it converges to, say, € as t — oo.

Since x(t) doesn't converge to 0, we must have € > 0, so for all ¢,
e < V(xz(t)) < V(z(0)).

C={z]|e<V(z) <V(x(0))} is closed and bounded, hence compact. So V'
(assumed continuous) attains its supremum on C, i.e., sup,.o V = —a < 0. Since
V(x(t)) < —a for all t, we have

V(a(T)) = V(2(0)) + / V(e(t) dt < V(2(0)) — aT

which for T" > V (x(0))/a implies V (2(0)) < 0, a contradiction.

So every trajectory x(t) converges to 0, i.e., ¢ = f(x) is G.A.S.
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A Lyapunov exponential stability theorem

suppose there is a function V' and constant o > 0 such that

e 1/ is positive definite

e V(2) < —aV(z) forall 2

then, there is an M such that every trajectory of & = f(x) satisfies
|lz(t)]| < Me="/2[|z(0)]
(this is called global exponential stability (G.E.S.))

idea: V < —aV gives guaranteed minimum dissipation rate, proportional
to energy
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Example

consider system
1 = —x1 + g(72),

where [g(u)| < [u[/2, [h(u)] < |ul/2

:tg = —X9 -+ h(ilj’l)

two first order systems with nonlinear cross-coupling

1

X1

Y

s+ 1

L2 s+ 1
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let's use Lyapunov theorem to show it's globally asymptotically stable
we use V = (z% + z3)/2

required properties of V' are clear (V > 0, etc.)

let's bound V:
V = x84 Tody
= —a7 — x5 + x19(22) + w2h(21)
< —xf — @5+ ||
< —(1/2)(2f + 23)
= -V

where we use |z1xa| < (1/2) (2% + x3) (derived from (|z1] — |z2])* > 0)

we conclude system is G.A.S. (in fact, G.E.S.)
without knowing the trajectories
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Lasalle’s theorem

Lasalle’s theorem (1960) allows us to conclude G.A.S. of a system with
only V' < 0, along with an observability type condition

we consider = f(x)

suppose there is a function V : R” — R such that

e / is positive definite
e V(2)<0
e the only solution of w = f(w), V(w) = 0is w(t) = 0 for all ¢

then, the system & = f(x) is G.A.S.
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e last condition means no nonzero trajectory can hide in the “zero
dissipation” set

e unlike most other Lyapunov theorems, which extend to time-varying
systems, Lasalle’'s theorem requires time-invariance
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A Lyapunov instability theorem

suppose there is a function V : R” — R such that

e V(2) <0 for all z (or just whenever V(z) < 0)
e there is w such that V(w) < V(0)

then, the trajectory of & = f(x) with x(0) = w does not converge to zero
(and therefore, the system is not G.A.S.)

to show it, we note that V(x(t)) < V(z(0)) = V(w) < V(0) for all t > 0

but if z(t) — 0, then V(z(t)) — V(0); so we cannot have x(t) — 0
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A Lyapunov divergence theorem

suppose there is a function V : R” — R such that

e V(2) < 0 whenever V(2) <0
e there is w such that V(w) < 0

then, the trajectory of © = f(x) with x(0) = w is unbounded, i.e.,

sup ||z (t)|| = oo
>0
(this is not quite the same as lim; . ||z ()| = o0)
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Proof of Lyapunov divergence theorem

let £ = f(x), £(0) = w. let's first show that V(xz(t)) < V(w) for all t > 0.

if not, let T" denote the smallest positive time for which V (z (7)) = V (w). then over
[0, T], we have V (z(t)) < V(w) < 0,s0 V(z(t)) < 0, and so

/TV(:U(t)) dt < 0

the lefthand side is also equal to

T
/ V() dt = V(x(T)) — V(x(0)) = 0
0
so we have a contradiction.
it follows that V' (x(t)) < V (x(0)) for all ¢, and therefore V (z(t)) < 0 for all ¢.

now suppose that ||z (t)|| < R, i.e., the trajectory is bounded.

{z | V(2) < V(x(0)), [[z]] £ R} is compact, so there is a 8 > 0 such that
V(z) < —3 whenever V(2z) < V(z(0)) and ||z|| < R.
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we conclude V(z(t)) < V(x(0)) — Bt forallt > 0, so V(z(t)) — —o0, a

contradiction.
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Converse Lyapunov theorems

a typical converse Lyapunov theorem has the form

e if the trajectories of system satisfy some property

e then there exists a Lyapunov function that proves it

a sharper converse Lyapunov theorem is more specific about the form of
the Lyapunov function

example: if the linear system © = Ax is G.A.S., then there is a quadratic
Lyapunov function that proves it (we'll prove this later)
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A converse Lyapunov G.E.S. theorem

suppose there is 3 > 0 and M such that each trajectory of & = f(x)
satisfies
lz(t)|| < MePt|z(0)|| for all t >0

(called global exponential stability, and is stronger than G.A.S.)

then, there is a Lyapunov function that proves the system is exponentially
stable, i.e., there is a function V' : R” — R and constant o > 0 s.t.

e I/ is positive definite

o V(2) < —aV(z) for all z
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Proof of converse G.E.S. Lyapunov theorem

suppose the hypotheses hold, and define

V) = [ et a
where £(0) = z, © = f(x)
since ||z(t)]| < Me=P|z]|, we have

o0 o0 M2
vwzjzmmst/szmeﬁ:—ww
: : %

(which shows integral is finite)
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let's find V(z) = a

dt V(z(t)), where x(t) is trajectory with z(0) = z

t=0

V(z) = lim(1/t) (V(2(t) - V(2(0)))

t

= tim/0) ([ el dr— [ el ar)

= lim(=1/0) [ fa(r)| dr

= 2l

now let's verify properties of V
V(z) >0and V(z2) =0 < 2z =0 are clear

finally, we have V(z) = =272 < —aV(z), with o = 23/M?
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Finding Lyapunov functions

e there are many different types of Lyapunov theorems

e the key in all cases is to find a Lyapunov function and verify that it has
the required properties

e there are several approaches to finding Lyapunov functions and verifying
the properties

one common approach:

e decide form of Lyapunov function (e.g., quadratic), parametrized by
some parameters (called a Lyapunov function candidate)

e try to find values of parameters so that the required hypotheses hold
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Other sources of Lyapunov functions

e value function of a related optimal control problem
e linear-quadratic Lyapunov theory (next lecture)

e computational methods

e converse Lyapunov theorems

e graphical methods (really!)

(as you might guess, these are all somewhat related)
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