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Abstract—State-space average-value modeling of pulsewidth
modulation converters in continuous and discontinuous modes
has received significant attention in the literature, and various
models have been developed. This paper presents a new approach
for generating the state-space average-value model. In the pro-
posed methodology, the so-called duty-ratio constraint and the
correction term are extracted numerically using the detailed
simulation and are expressed as nonlinear functions of the duty
cycle and average-value of the fast state variable. The parasitic
effects of circuit elements are readily included. The resulting
average-value model is compared to a hardware prototype, a
detailed simulation, and several previously published models. The
proposed model is shown to be very accurate in predicting the
large-signal time-domain transients as well as the small-signal
frequency-domain characteristics.

Index Terms—Average-value modeling, dc–dc converters, dis-
continuous conduction mode (DCM), state-space averaging.

I. INTRODUCTION

ACCURATE models of dc–dc converters are often re-
quired. The detailed models, wherein the switching of

each power-electronic device is represented, can be readily
built and implemented using various commercially available
simulation software packages and toolboxes. However, the
so-called average-value models, wherein the effects of fast
switching are neglected or “averaged” with respect to the
prototypical switching interval, are frequently required when
investigating power-electronic-based systems [1]–[3]. The
continuous large-signal (transient) models are typically non-
linear and can be linearized around a desired operating point.
Many simulation programs offer automatic linearization and
subsequent state-space and/or frequency-domain analysis tools
[4], [5]. Thereafter, obtaining a local transfer-function becomes
a straightforward and virtually instantaneous procedure. It
has been shown in [6] that the asymptotical stability of the
average-value model and that of a detailed switching circuit are
equivalent. Therefore, the calculated transfer-functions may be
used to design the controllers. Additionally, the average-value
models typically execute orders of magnitude faster than the
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corresponding detailed simulations, making them ideal for
representing the respective components in system-level studies.

Many averaging methods are based on a specific ideal
topology and piecewise linear (triangular) waveform of the
current and/or voltage. A similar approach to averaging,
the so-called sampled-data modeling, takes into account the
time-variant discrete nature of the converters [7]–[10]. This
approach looks at the cycle-by-cycle behavior and suppresses
the internal details within a switching cycle [11]. However,
since the basic sampled-data models neglect the dynamics of
state variables in between the sample instances, inaccuracy
arises in predicting high-frequency dynamics [12], [13]. Av-
erage-value modeling is also often performed by averaging the
switching network and/or it elements. This approach is known
as circuit averaging or averaged-switch modeling [14]–[17]. In
this and similar approaches [18]–[20], the switching elements
in a switch-cell are replaced with the appropriate controlled
sources. Another systematic approach, often referred to as
state-space averaging, involves manipulation of the state-space
equations (matrices) of the converter system. The analytical
derivation of this method is based on a given operation mode,
such as continuous or discontinuous, and on a small-ripple
approximation [21], [22].

Although considering ideal/lossless components signif-
icantly simplifies the model development, neglecting the
parasitic effects in averaged models may sometimes lead to
failure in predicting the fast-scale instabilities [23]. Parasitics
are also considered in the design stage when the performance,
efficiency, and robustness of a system are considered [24].
Parasitics are often modeled as appropriate equivalent series
resistances (ESR) associated with the circuit components. How-
ever, if losses due to the switch and/or inductor are taken into
account, the analytical derivations become more challenging.
Steady-state and small-signal analysis of switching converters
with parasitics have been studied in [25]–[27]. A large-signal
averaged model can be found in [28], which considers some but
not all parasitics. The analytical derivation also becomes more
complicated when the number of energy storage elements is
increased [29] and/or the fast state variable is held at a nonzero
constant value within the discontinuous subinterval [30].

In this paper, a new method of constructing average-value
models is presented. The properties of the proposed model and
the contributions of this paper can be summarized as follows.

• First, it is shown how the conventional state-space aver-
aged equation can be corrected to include the fast dynamics
of the discontinuous state variables.
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• Unlike many previously derived models, the proposed
model is numerically constructed using the corrected
state-space formulation and the detailed model of the
converter under study.

• The proposed model can be used in continuous and dis-
continuous modes without special consideration for the
boundary mode or the transition between modes.

• The proposed methodology is demonstrated on a boost
converter and can be applied to other topologies. More-
over, the model has a well-defined structure that provides
the framework for further automating the approach.

• The resulting averaged model is non-linear, explicit, con-
tinuous, and valid for large-signal transients as well as for
linearization and small-signal characterization.

• Any parasitics present in the detailed model are automat-
ically included in the final averaged model without re-
quiring extensive analytical derivations.

• The proposed model has been compared with the most
up-to-date published state-space averaged model [31], as
well as several other previously published models [16],
[17], [28], [32], [33].

• The accuracy of the generated average-value model has
been verified in time-domain as well as frequency-do-
main against the hardware prototype, the detailed sim-
ulation, and several conventional analytically-derived
average-value models.

II. GENERAL FRAMEWORK

Switched converters are often modeled as piece-wise linear
networks in which the topology changes at the boundaries be-
tween subsequent subintervals within a prototypical switching
cycle [34]. Based on the state of each switching element, such as
transistor and diode, the appropriate state-space equations can
be derived [35]. The state variables are typically associated with
the energy storage components. In addition, there are well-de-
fined algorithms [36] and software tools [37]–[41] that automat-
ically generate and dynamically update the state-space model
for each new topological state of the system being studied. Re-
gardless of the approach or tool used, it is assumed that inside
each -th subinterval the system state model may be expressed
by the system matrices , and .

As a representative of basic topologies, a boost converter
circuit shown in Fig. 1(a) is considered in this paper. The
inductor current and capacitor voltage define the state vector

. The converter switching frequency is denoted by
and a prototypical switching interval is . In com-

parison to the fast dynamic response of the inductor current, the
capacitor voltage typically undergoes slower dynamic transient
and usually remains continuous. Thus, in the given topology,
the inductor current and capacitor voltage may be called the
fast and slow state variables, respectively. In continuous con-
duction mode (CCM), switching interval is divided into two
subintervals 1,2 and , and the respective
duty cycles are and 1 . It is assumed that the active
switch duty cycle is controlled externally.

Fig. 1. (a) Boost converter circuit diagram and (b) idealized state variable
waveforms for a lossless converter in DCM.

The state-space averaging of CCM has been presented previ-
ously in numerous publications [21], [42], [43], and ([44], Chap.
7). The converter’s state-space equation in this mode is

(1)

where is the switching function, are the system
matrices, and is an input vector. By definition, the so-called
fast average of a state variable over a prototypical switching
interval is

(2)

The resulting is also called the actual or the true average
of . Since the averaging is commutative with respect to dif-
ferentiation, taking the fast average of (1) over a prototypical
switching interval yields

(3)

This result follows from the fact that the fast average of the
switching function over a prototypical switching interval is the
duty cycle function

(4)

It is also assumed that the average of the product is equal to the
product of the averages, especially

(5)

(6)
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TABLE I
CONVENTIONAL AVERAGE-VALUE MODELS FOR A BOOST CONVERTER OPERATING IN DCM

Assumption (5) is usually accepted when the source ripple is
neglected. Assumption (6) is acceptable if the original switching
variables do not deviate significantly from their average values
(small ripple approximation) and system matrices and
commute [22]. These two assumptions are commonly used for
converters working in CCM [21] and have been applied to the
boundary mode case [45].

In discontinuous conduction mode (DCM), there are three
topological states 1,2,3 . In this mode, a prototypical
switching interval is divided into three subintervals corre-
sponding to , and 1 , respectively. The
inductor current and the capacitor voltage in this mode
are shown in Fig. 1(b) for a lossless boost converter, wherein
goes to zero when both switch and diode are off. Conventional
state-space averaging for converters working in DCM has been
summarized in [31], [32], ([44], Chap. 7), and ([46], Chap. 6).
For this mode, the direct extension of (1)–(3) results in

(7)

which is no longer accurate. The conventional state-space aver-
aging method in (7) averages only the system matrices and not
necessarily the state variables themselves [31]. The simplifying
assumption made in (6) now presents a problem for the fast state
variable , which is zero in the third subinterval. In particular,
the local average of in the third subinterval is zero [see
Fig. 1(b)], whereas the conventional state-space averaging im-
plies that this value should be . Since is not zero, the re-
sult of the conventional state-space averaging is not zero unless
the length of the discontinuous subinterval is zero, which is
only true in CCM. The reader may also find an excellent discus-
sion in [31] describing the inconsistency of (7) in terms of pre-
dicting the capacitor charging current. Moreover, becomes
a dependent variable that can now be expressed as an algebraic

function of other system variables. This dependency of is fre-
quently called the duty-ratio constraint [31], ([44] Ch. 11).

III. ANALYTICAL DERIVATION AND THE MODEL ORDER

In second-order dc-dc converters (i.e., boost, buck, and buck-
boost) operating in DCM, the transfer-functions exhibit domi-
nant low-frequency pole and zero due to the slow state variable
dynamics. The pole and the possible right-half-plane zero due
to fast state variable dynamics typically occur in higher frequen-
cies, near or exceeding switching frequency. To provide an ac-
curate average-value model via state-space averaging, the duty-
ratio constraint has been found to be the key distinction between
the reduced-order, full-order, and corrected full-order models
[13]. Although these models can be provided through either
the state-space averaging or the circuit averaging, the resulting
system equations are often identical and/or equivalent. For con-
sistency, the representative models are summarized in Table I,
wherein the location of both low and high frequency poles and
zeros are shown. As seen in the corrected full-order model,
the second pole is located at 2 , which can
easily exceed the switching frequency. Also, right-hand-plane
zero is located at frequency 2 , which is more than twice
the switching frequency. This fact often justifies the use of re-
duced-order models that neglect fast dynamics.

A. Reduced-Order Model

The fast dynamics of in DCM can sometimes be neglected
when considering responses in the range of lower frequencies.
In this case, the average-value of can be expressed as an al-
gebraic function of the remaining variables. Also, can be
expressed as a function of the control signal and the av-
erage-value of the slow state variable (state-space averaging
[32], circuit averaging [16]). A principle of volt-second bal-
ance that implies a steady-state inductor current waveform ([44],
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pp. 20–24), ([46], pp. 13–14) is often utilized. A symbolic anal-
ysis program based on the volt-second balance has been intro-
duced to generate the reduced-order averaged models [42], [43].
The resulting models accurately predict the low-frequency re-
sponse up to roughly one-tenth of the switching frequency [13],
[31], [47]. However, at higher frequencies, errors become very
noticeable especially in the phase plot.

B. Full-Order Model

The inductor current dynamics are included in the full-order
average-value models (equivalent duty ratio [33], loss-free
resistor ([44], Ch. 11), and averaged-switch model [17]), which
show great improvement over the reduced-order models. Also,
some effort is undertaken in [49] to include conduction losses
based on the switch-cell introduced in [17]. However, the re-
sulting full-order models are still based on volt-second balance
over the inductor, while the presence of inductor dynamics
within the switching interval implies that the voltage over the
inductor may differ from zero. The reader may find a good
discussion of this averaging paradox in [50], which shows that
the averaging over one switching cycle can be viewed as a
sampling of the true averaging. It was concluded in [13] and
[50] that the volt-second balance may result in a modeling
error due to violation of the Nyquist sampling theorem. The
resulting high-frequency pole and right-hand-plane zero are
therefore not predicted accurately. Consequently the phase-lag
and the magnitude-drop caused by the inductor dynamics are
overestimated [13], [31].

C. Corrected Full-Order Model

More recently, corrected full-order averaged models that
very accurately capture the high-frequency dynamics of in-
ductor current were proposed for circuit averaging [48] and
state-space averaging [31]. Volt-second balance was not used in
these models; instead, is expressed as a function of the con-
trol signal and the average-value of the fast state . Using
the new representation of and correcting the state-space
model (7) with the special correction matrix [31], a corrected
full-order model for ideal dc-dc converters can be obtained.
Including the losses for improving the model accuracy is not
a trivial task often requiring laborious derivations that are
model/topology-specific. Moreover, not all types of parasitics
are easily included in all of the models. Some parasitics have
been considered in [28] using the switch-cell established in
[48].

IV. NUMERICAL AVERAGE-VALUE MODELING

A. Correction Term

The methodology proposed in this paper is based on state-
space averaging [31] and assumes a non-ideal converter circuit.
In particular, to obtain a correct state-space averaged equation
for DCM, one should consider true averaging from the very be-
ginning. In the following discussion, it is instructive to partition

the state vector within the prototypical switching interval
as corresponding to each subinterval shown
in Fig. 1(b). In particular

elsewhere
(8)

elsewhere
(9)

elsewhere.
(10)

The corresponding state models are

elsewhere
(11)

elsewhere
(12)

elsewhere.
(13)

Taking the formal average of (11)–(13) produces the local av-
erage models. In particular, the local average of the first subin-
terval (11) implies

(14)

Since and terms are constant, and

(15)

we get

(16)

Applying the same procedure to (12) and (13) results in

(17)

The final averaged system-equation is obtained from (17) as

(18)

Equation (18) can be rewritten as

(19)
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where the diagonal weighting-correction matrix is
with the entries defined as

(20)

Here, since the actual average of in the third subinterval is
zero, the correction coefficient is zero as defined by (20).
Finally, through an observation of (7) and (19), a correction ma-
trix can be defined as

(21)

whereas the corrected state-space averaged equation can be ex-
pressed as

(22)

This result is similar to the analytical derivation in [31], where
is also a diagonal matrix. In particular, for the lossless cir-

cuit considered in [31], the inductor current has a triangular
waveform [Fig. 1(b)], and the diagonal entries corresponding
to and have been found to be and 1, re-
spectively. It is important to note that because the derivative of
the discontinuous state in the third subinterval is zero, the
corresponding entries of and have zeros too. Therefore,
the correction coefficient could be any non-zero value that
would multiply with the corresponding column of to zero
and give the correct final result. Moreover, if the other two cor-
rection coefficients for the inductor current, and , are
assumed to be equal, which holds if and only if

(23)

then, can be set to be

(24)

So, if one assumes a triangular waveform of and the condi-
tion (24), it can be readily verified that the correction matrix ,
as defined by (21), will come out diagonal with the entries ex-
actly as those in [31]. However, the inductor losses and capacitor
dynamics are neglected by assuming a triangular waveform of

. When the parasitics are included, the correction coefficients
(20) for the inductor current are not equal. Moreover, including
the parasitics of the circuit’s components will violate (23) and
(24). Consequently, the correction matrix will not diagonal.
The advantage of having a diagonal correction matrix is that
each averaged-state variable has its own correction weight de-
coupled from the other states. Therefore, a modified correction
matrix should be defined, which can be made diagonal by
construction, assuming 0 for 1,2. Specifically

(25)

(26)

where is diagonal with entries . Thereafter, is used
in the corrected state-space averaged (22). Also, since the slow
state variable complies with the small ripple approximation,
the entry of corresponding to the slow state variable is usu-
ally 1. In the case of higher-order converters, the correction ma-
trix can be partitioned into a diagonal matrix for the discontin-
uous state variables and an identity matrix for the continuous
ones.

B. Model Implementation

The detailed switching model (which includes all the neces-
sary parasitics) should be constructed first. If a state-variable ap-
proach is used to implement the detailed simulation, the system
matrices , and in each subinterval can be ex-
tracted numerically. Using the detailed simulation, it is easier
to extract the correction matrix , rather than extracting the
weighting correction matrices in each subinterval. Herein,
without loss of generality, we assume that there is only one
control input and one discontinuous conduction subinterval

. However, the methodology can be extended to converters
with more complex topologies [29], [51]–[53]. In the proposed
framework, the diagonal elements of the correction matrix
and the duty-ratio constraint are obtained as functions of the
duty cycle and the average-value of the fast state variable

, which ensures a full-order of the resulting model. To obtain
the values of and , the detailed model is
run in the operating region of interest, whereas the state vari-
ables are averaged numerically over the prototypical switching
interval. In particular, the average-value of the state vector is
computed in a steady state corresponding to a given operating
point. Specifically, in the steady-state we have

(27)

from which the vector is computed as

(28)

Thereafter, the diagonal entries of are found using the
computed and according to (26). To obtain the functions

and for the desired operating range, the
detailed simulation is run with different values of the control
variable as well as the load . The variables resulting
from this procedure are and , and the correction
matrix is computed using (26)–(28). These variables are stored
for future use in lookup tables, wherein an interpolation/extrap-
olation may be used as necessary.

It should be pointed out that the numerical robustness of (21)
and (28), and therefore of the proposed procedure, depends on
the condition number of . Specifically, if the con-
dition number is very high, implying that the matrix is close
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Fig. 2. Condition number of the left multiplier in (21) and (28) for the consid-
ered operating range.

Fig. 3. Fast state variable composite correction coefficient m .

to being singular, significant numerical errors may occur [54].
However, the interested reader may consider matrices found
in [31] and observe that since always has a full rank and

0, the rank of is also preserved. Moreover,
including the parasitics makes the system more dissipative and
shifts the corresponding eigenvalues further from zero. To verify
that the proposed procedure is numerically robust in the con-
sidered operating range, the condition number has been calcu-
lated and plotted in Fig. 2, where it is shown to increase for very
high values of and . However, it remains well below two
orders of magnitude for the considered operating range, which
does not represent a numerical problem for the IEEE double-
precision floating-point machine arithmetics with precision on
the order of 10 [54] (ANSI/IEEE Standard 754–1985).

The final numerical functions for and are plotted in
Figs. 3 and 4, respectively. Since the capacitor voltage is con-
tinuous, the entry is about 1 and is not plotted here. As
expected, the surfaces obtained are continuous and smooth. It
can be noted in Fig. 3 that is 1 in the region corresponding

Fig. 4. Duty-ratio constraint d .

Fig. 5. Implementation of the proposed average-value model.

to CCM. In DCM, increases to compensate for the defi-
ciency in conventional state-space averaging. In this mode,
becomes a nonlinear function of and . In Fig. 4, has a
flat surface corresponding to CCM, and varies linearly along the

-axis independent of (as expected, 1 ). In DCM,
the surface of becomes non-linear and falls down.

Once the functions and are available
and stored, the proposed average-value model is implemented
according to the block diagram shown in Fig. 5. The system
matrices for each subinterval are calculated numerically. For
a given value of control variable and state vector , the
duty-ratio constraint and correction-term matrix are acquired
through the lookup tables. Therefore, the computed total aver-
aged system matrices dependent on state and duty cycle

(29)

These matrices are used to build a new continuous non-linear
average-value model that replaces the discontinuous detailed
model. Because the proposed model is not derived analytically
but is instead constructed according to Fig. 5 with the duty-ratio
constraint and correction matrix extracted numerically, it
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Fig. 6. Measured inductor current and capacitor voltage.

is herein referred to as the numerical average-value model
(NAVM). The structure of the final model is

(30)

which becomes available for large-signal transients as well as
numerical linearization and subsequent small-signal frequency-
domain analysis.

V. CASE STUDIES

The boost converter described in the previous section is used
as a benchmark in subsequent case studies. The detailed model
is implemented in Matlab/Simulink [5] as a masked CMEX
S-function using the toolbox [39]. The main parasitics of the
hardware prototype have been included in the detailed model.
The converter parameters summarized in the Appendix corre-
spond to the hardware prototype that has been built. Since the
proposed NAVM has been extracted from the detailed model,
it only approaches the detailed model in terms of accuracy.
The proposed model has been implemented and compared to
the hardware prototype, the detailed model, and several pre-
viously published average-value models in both time and fre-
quency domains.

A. Time Domain

The measured waveforms of the capacitor voltage and the in-
ductor current corresponding to an operating point with
0.5 and 15.12 are shown in Fig. 6. It can be seen
from this figure that parasitics cause nonlinearity of the current
and voltage waveforms as compared to the idealized waveforms
shown in Fig. 1(b). In an ideal boost converter, the steady-state
average output voltage is always larger than or equal to the input
voltage. However, if the parasitics are significant, the output
voltage drops and can even fall below the input voltage due
to poor switch utilization [55]. This phenomenon becomes es-
pecially pronounced when the duty cycle approaches unity. In
large-signal average-value models, the effect of parasitics has

Fig. 7. Inductor current and capacitor voltage resulting from ramping-up the
duty cycle: (a) detailed simulation, (b) corrected full-order model [28], and (c)
proposed numerically constructed model (NAVM).

been included in models operating in CCM [26], [56] as well as
DCM (full-order model [49], corrected full-order model [28]).
However, not all types of parasitics are easy to include in all of
the models. In particular, the averaged-switch model [28] can
readily include the ESR of the inductor and capacitor, but the
conduction losses due to the switching elements are neglected.

To demonstrate the effect of the transistor’s on-state ESR,
the following study is considered. The system initially oper-
ates in a steady-state with 7 and 0.3. At
time 0.0002 s, the duty cycle increases as a linear ramp
from 0.3 to 0.96, which is reached at 0.00075 s. As seen
in Fig. 7, the converter mode changes from discontinuous to
continuous, and finally the overloaded region of operation is
reached (a—solid line). The model [28] was chosen because it
automatically works in DCM and CCM. On the one hand, the
results predicted by the model [28] (b—dashed line) certainly
over estimate the final steady-state as well as the peak values
for current and voltage. This study shows the importance of in-
cluding the switch’s parasitics. On the other hand, the responses
predicted by the proposed NAVM (c—thick solid line) remain
in excellent agreement with the transient produced by the de-
tailed simulation throughout the entire study. Although it might
be possible to re-derive the model [28] to include the transistor’s
parasitics, one of the advantages of the proposed model is that
essentially any parasitics included in the detailed model become
automatically included without additional effort.

The accuracy of the proposed model in predicting large-signal
behavior in time-domain has also been verified by studying the
effect of sudden changes in load. In the following study, the
output of the boost converter was regulated using a propor-
tional-plus-integral (PI) controller as shown on a simplified di-
agram in Fig. 8. The PI controller was designed to regulate the
output voltage at 15 V by adjusting the duty cycle . The con-
troller parameters are 0.1 and 50. In the study being
considered, the converter initially operates in a steady-state with
a 40- resistor attached to the output terminals. At 0.0002 s,
the load is first changed to 80 s . At 0.0012 s, another
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Fig. 8. Regulated boost converter.

Fig. 9. Inductor current and capacitor voltage response to step changes in load.

27 resistor is connected in parallel to the load. The resulting
time-domain transient is depicted in Fig. 9. As seen in Fig. 9,
after the first change in load the converter still operates in DCM,
whereas after the second change the converter mode changes to
CCM. In each case, the control action is directed to bring the
output voltage to the desired 15-V level. Throughout all tran-
sients, the large-signal behavior of the detailed model is accu-
rately predicted by the proposed NAVM.

B. Frequency Domain

The control-to-output transfer-function is often considered
in the literature for verifying the small-signal behavior of the
converter models. The small signal-injection and subsequent
frequency sweep method has been implemented to extract the
small-signal transfer-function from the hardware prototype and
from the detailed simulation corresponding to an operating
condition defined by 15.12 and 0.5. Using this
method, the respective input and output variables were captured
for each frequency point and processed using the FFT utility
to extract the necessary magnitude and phase information. The
measured inductor current and capacitor voltage for this oper-
ating point are shown in Fig. 6. The magnitude and phase of the
corresponding control-to-output transfer-function are plotted in
Fig. 10, where the (o) and (*) marks show the hardware mea-
surement and detailed simulation at the same frequency points,
respectively. As expected, the detailed simulation matches the

Fig. 10. Control-to-output transfer-function magnitude and phase: (a) reduced-
order model (state-space averaging [32], circuit averaging [16]), (b) corrected
full-order model without parasitics (state-space averaging [31], circuit aver-
aging [28]), (c) full-order model with parasitics included (state-space averaging
[33], circuit averaging [17] and [49]), (d) corrected full-order model with para-
sitics included (state-space averaging [31], circuit averaging [28] and [48]), and
(e) proposed numerically constructed model (NAVM).

hardware prototype very accurately. The transfer-function is
evaluated up to 25 kHz, which is one-half of the switching
frequency (50 kHz). Closer to the switching frequency the
results become distorted due to interaction between the injected
perturbations and the converter switching. In general, consid-
ering frequencies close to and above the switching frequency
has limited use for the average-value model since the basic
assumptions of averaging are no longer valid. Since the NAVM
only approaches the detailed simulation in terms of accuracy,
the data points produced by the detailed model are considered
here as a reference.

In addition to the proposed NAVM, several commonly cited
large-signal averaged models (Table I) are considered here for
comparison purposes. Since the average-value models are con-
tinuous, they have been linearized at the same operating point,
and respective transfer-functions then have been extracted.
The results are superimposed in Fig. 10 for better comparison.
In particular, the reduced-order lossless model [16], [32],
(a—dashed line) clearly portrays a first-order response that
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significantly under estimates the phase. Also, because the par-
asitics were not included, this model overestimates the dc gain
by as much as 6 dBs. Next, the corrected full-order model [31]
without parasitics is considered (b—solid line). Although a sig-
nificant improvement over the reduced-order model (a—dashed
line) is noticed, the dc gain remains off as before. Taking
into account the effect of parasitics in analytically derived
average-value models is not a trivial task. In particular, the
derivation of the duty-ratio constraint becomes case-dependent
and laborious. Including parasitics in the full-order model [17],
[33] provides a nearly exact match in dc and the low-frequency
range (c—dash-dot line), whereas the magnitude in high-fre-
quency falls a bit lower. This discrepancy is attributed to the
misallocation of the high-frequency pole and zero predicted
by these types of full-order models. For more details on this
phenomenon, the reader will find an interesting discussion and
survey of full-order models in [13] and [31]. To include the
necessary parasitics, the corrected full-order model [31] was
considered. In particular, the ESRs of the inductor and the
transistor were considered in the state matrices as well as the
derivation of the duty-ratio constraint . The resulting model
(d—dashed line) provides the closest match to the detailed
simulation among all analytically derived models, yet is a bit
off in lower frequency. However, as shown in Fig. 10 (e—thick
solid line), the developed NAVM predicts the control-to-output
transfer-function with excellent agreement between the detailed
simulation and the measured data.

VI. CONCLUSION

In this paper, we have presented a general approach for gener-
ating the state-space average-value models of PWM dc-dc con-
verters. The proposed method relies on a corrected state-space
averaging formulation and has a well-defined structure. The pre-
sented methodology overcomes the complexity and challenges
common to many previously developed models when the para-
sitics of circuit elements are considered. The proposed numeri-
cally constructed model can function seamlessly in both CCM
and DCM.

It is shown that obtaining an accurate full-order average-value
model requires extracting the duty-ratio constraint and the cor-
rection term. The functions of the duty-ratio constraint and
correction term were obtained numerically by running the
detailed simulation. Even though establishing the proper av-
erage-value model requires running the detailed simulation,
once established, the resulting model is continuous and valid
for large-signal time-domain transient studies as well as for
linearization and subsequent small-signal characterization of
the overall system over a wide range. The proposed model is
verified in time-domain as well as frequency-domain against
the hardware prototype, the detailed simulation, and several
other models commonly cited in the literature. The numerical
average-value modeling developed in this paper provides a
convenient framework for systematically averaging the PWM
dc-dc converters and raises new possibilities for future research
in automated average-value modeling.

APPENDIX

Please note that 4 V, 6.2 H,
0.176 0.17 (MOSFET, IRF520V), switching
frequency 50 kHz, 0.4 V (diode 12TQ035 forward
voltage drop), 14.715 F, and 30 m .
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