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Observers for Nonlinear Stochastic Systems 
TZYH-JONG TARN, MEMBER, IEEE, AND YONA RASIS 

Absdrcrct--Motivated by the complexity and the large quantity d 
on-line operatlons required  for nonlinear filtering problems,  observers  for 
nonlinear st-c systems are constrocted based on a Lyapnnov-like 
method.  Sufficient  conditions on the stmctnre of a nonlinear stochastic 
system for the existence of an exponentially bounded observer are given. 
These conditions can be applied of€-line. The StabiliZatiMl of unstable 
nonlinear stochastic systems using observer feedback are investigated. 
Sufficient conditions to stabilize CaScBded control and observer  in a 
feedback  arrangement are given. 

I. INTRODUCTION 

HE PROBLEM of estimating the state variables of a 
Tdynamical system  given observations of the output 
variables is of fundamental importance in control theory 
since many feedback control designs require the availabil- 
ity of the  state of the controlled plant. 

If one considers the class of linear systems, then there 
are two approaches available. If the output variables can 
be measured exactly and if there are no stochastic dis- 
turbances acting on the system, then one can use a Luen- 
berger observer to reconstruct the  state [1l-[3]. On the 
other  hand, if all the output variables are corrupted by 
additive white noise then one can use a Kalman filter 
[4]-[7] for a state estimation. The relation between the two 
for linear systems  was clarified by Tse and Athans [8]- 

There is  extensive past work on nonlinear estimation on 
stochastic continuous systems  using various approaches 
by Stratonovich [ll], Kushner [ 121, Wonham [ 131,  Bucy 
[14],  [15], Frost and Kailath 1161, and others; however, 
unlike the linear case the solution to the nonlinear estima- 
tion problem is  given as a nonexplicit representation. 

To obtain a practical solution to the nonlinear estima- 
tion problem, that is, a suitable filter, one  can find algo- 
rithms for the evaluation of the representation [17], [18_], 
(these have severe limitations due to the extensive com- 
putational work required) or  use suboptimal filters [19], 
[20] based on the assumption that the conditional density 
can be adequately characterized by its low-order mo- 
ments. 

For stochastic discrete nonlinear systems, the situation 
is  even more unsatisfactory. Only scattered results based 
on approximation theory exist.  Several authors have sug- 
gested filtering algorithms based on the Gram-Charlier 
expansion of the conditional density [21], [22], or  on the 
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related Edgeworth expansion [23]. Kivler [24] has sug- 
gested basing ?n approximation scheme on the Hermite 
expamion. Alspach and Sorenson [25] have suggested 
using a weighted sum of Gaussian densities to approxi- 
mate the conditional density. Center [26] suggested a new 
class of filtering algorithms based on a generalization of 
standard least square approximation. Bucy and Senne [27] 
have used a recursive algorithm which  is related to gener- 
alized least square approximation by step functions. 

Summarizing, the usefulness of nonlinear  filters is 
limited by the complexity and the  quantity of on-line 
operations required. As a result, nonlinear filters have not 
yet become practical. 

In this paper we  will approach nonlinear estimation 
through the concepts of observer for stochastic nonlinear 
systems. Potentially, this route may prove more advanta- 
geous for implementation than the approach through 
estimation theory, as is  now advocated. We  use a 
Lyapunov-like method to construct observers for both 
continuous and discrete nonlinear stochastic systems 
driven by  noises  with bounded covariances. Sufficient 
conditions on the structure of the observed system for the 
existence of such observers are established. These condi- 
tions can be applied off-line and can be used in the design 
of observers of known characteristics. The sufficient con- 
ditions on the stability of cascaded control and observer 
in a feedback arrangement is presented. 

11. LYAPUNOV-LIKE CONDITIONS FOR STOCHASTIC 
STABILITY 

The stability of systems modeled by ordinary differen- 
tial or difference equations has been studied by many 
mathematicians. The most  powerful tool in this  field 
seems to be Lyapunov’s second method. 

Lyapunov conditions for the stability of stochastic dif- 
ferential and difference equations were developed by 
Wonham [28], [29], Kushner [30],  [31], Zakai [32],  [33], 
Miyahara [34], and others. 

There are several  ways to define stability (convergence) 
of stochastic systems  (see, for example, [35]). To avoid 
confusion we would like to first state what definitions on 
stochastic stability will be used. Motivated by the criterion 
frequently used in estimation theory, i.e., minimum mean 
square, we define stability as follows. 

Definition I :  The origin of a continuous stochastic pro- 
cess xt is said to be asymptotically stable in mean square 
if there exist constants (Y > 0, k ,  > 0 and k, > O  such that 

EJ1~,11~< k ,  + k2edar, 

and then the process x, is said to  be exponentially 
bounded in mean square with exponent a. 
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Definition 2: The origin of a discrete stochastic process 
x,, is said to be asymptotically stable in mean square if 
there exist constants 0 < a < 1, k, > 0 and k2 > 0 such that 

EJJx,JJ2<kl+k;!(l-(y)", 

and then x, is said to be exponentially bounded in mean 
square with exponent a. 

Remark: Definition 1 (or 2) does not necessarily  imply 
that E IIx, (or E 1 1 ~ ~ 1 1 ~ )  decreases for all t (or n),  only the 
bound decreases exponentially and  as t+co (or n+m) the 
mean square of the process  is bounded by 

E11~~,1I2< k ,  
where k, depends on the noise disturbing the system. 

If k ,  = 0, that is, if 

EIlx,l12< ke-*' (orEIIx,112< k(1-a)"), 

then x, (or x,) converges to zero in mean square (which 
also  implies convergence in probability). 

Continuous Systems 

Consider a  dynamical system modeled by the It6 
stochastic differential equation 

dx, = f ( x , ) d t +  U ( X t ) d w z  (1) 

where xi = (x:',x:) and f(x,) are vectors in R2", x: and x," 
are vectors in R", u(x,) is a 2n X q matrix valued function, 
w, is the standard q-dimensional Brownian motion pro- 
cess, and f ( ~ , )  and u(x,) satisfy a global Lipschitz condi- 
tion, namely, for all x ,  y E R *" 
and linear growth condition 

for vectors l l f l l  =(Zix2)'i2 and for matrices 11u)1 = ( X j j  

Associated  with the processes defined by  (1)  is the 

(C1) Ilf(x)-f(Y>II+  Ildx)--(Y)ll  < CllX-YIl 

(C2) Ilf(x)l12+ ll4x)1l2 < k ( l +  11x112) 

0iJ.l . 2 1/2 

Kolmogorov (backward) differential operator 

where 
a (-> 
a? V(*) = col- . 

Also, we denote 

U ( 4  E [ f ( x , ) l x o = a l .  

We will consider functions V ( x )  with the following prop- 
erties [32]. 

1) V ( x )  is real-valued, nonnegative, and twice continu- 
ously differentiable. 

2) Let F(a,t) stand for any of the functions 

Theorem I :  If x, is generated by  (1) and if V(E,) (with 

a) V ( % ) > C I I E , J I ~ ,  for all %ER", C>O,  v(o)=o, 
b) eV(E,)>k-aV(%),  forallE,ER",k>O,a>O, 

E, = x: -x:, co = a) satisfies 1) and 2)  such that 

then 

Proof: The proof  follows  essentially from Zakai [32]. 
By properties 1)  and 2), the expectation of the integrated 
form of  ItG's rule  gives 

It follows that E,V(E,) is absolutely continuous in t (with 
respect to Lebesgue  measure). Therefore, for almost all s, 
s > o  

so we have 
de "E, Y (E , )  

ds < kern 

Integrating the last inequality we  get 

euzE,V(~,)- V ( ~ ~ = a ) < - ( e " ' - l ) ,  k 
a 

from which the result of the theorem follows. 
Remarks: 1) A scalar  function Y ( E , )  = V(x,' - x:) 

satisfying conditions a) and b) of Theorem 1 will  be called 
a Lyapunov-like function for system  (1).  Since V is not 
positive definite on R'", the existence of the Lyapunov- 
like function does not guarantee any Lyapunov stability 
for system (1). 

2) Theorem 1 gives sufficient conditions so that the 
origin of the stochastic process E, will be asymptotically 
stable in mean square in the large (i.e., for all initial states 
e0=a). Since as t+m, 

regardless of the initial state eo. 
Corollary I :  If x, is generated by (1) and if V(X: ,E , )  

(with E, = x: - x:, ( x & , E ~ )  = a) satisfies 1) and 2)  such that 
a)  V(X/,E,) > cll(x,' ,E;)[I~, for all x, E R2", c >0, V(0,O) 

= 0, 
b) ~ V ( x , ' , ~ , ) < k - c u V ( x ~ , ~ , ) ,  for all x Z E R 2 " ,  k>0 ,  

a >o, 
then 

Proof: Similar to Theorem 1. 

Then F(a, t )  is, for each a,  bounded in t in any bounded t 
interval. Consider a dynamical system described by the sto- 

Discrete Systems 
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chastic difference equation 111. REQUIREMENTS OF THE OBSERVER DESIGN 

x,+ I = f ( 4  + 4 X k h  (2) Consider a nonlinear system modeled by the It6 

where x; = ( x i ' , x f )  andf(x,)  are vectors in R'", x; and x i  
are vectors in R", ~ ( x , )  is a 2n X 4 matrix valued function d x , = f ( x r ) d t + u , ( x , ) d w ,  
and wk is a q-dimensional sequence of uncorrelated nor- 
malized Gaussian random variables.  with observation equation 

stochastic differential equation 

(3 )  

Theorem 2: If x, is generated by (2) and if there exists 

a) V ( ~ ) > C ~ ~ ~ ~ ~ ~ ,  for all %ER",  c>O, V(O)=O 
b) E, V(%+,)-V(%)<k-aV(en), for all %E 

a function V ( % )  (with % =  x,' - x:, eo= a) such that 

R", k>O, O<a< 1, 
then 

cE,II%ll29(l-a)"V(a)+k ( ~ - L Y ) ~ .  
n -  1 

i = O  

Proof: From condition b) 

E , - , ~ ( % )  < k +  (1 - a)V(%- 1). 

Using the property 

&, = h ( x r )  dt + U' (x , )  dc, (4) 

where x, andf(x,) are n-dimensional vectors, y; and h(x,) 
are m-dimensional vectors, f(.) and h( .) are continuously 
differentiable, w, and v, are, respectively, q- and r- 
dimensional  uncorrelated  standard Brownian motion 
processes, and al(x,) and o2(x,) are matrix functions of 
appropriate dimensions. Also assume that  both system (3) 
and the observation equation (4) satisfy (Cl)  and (C2). 

The problem is to design a dynamic system (observer, 
state estimator) for system (3), using the output, y ,  from 
(4) as the input, such that the difference between the 
observer output z, and the system state x, is exponentially 
bounded in mean square. Such an observer output  can 
then be used as an estimate of the system state. 

In choosing the observer structure, two possible ap- 
proaches to the design should be distinguished. One is to 
seek the best possible observer without any  additional 
constraints. On the other hand,  additional constraints 
(motivated by practical, mathematical, or computational 
considerations) may be  imposed. 

In general, the observer can be described by any non- 
linear stochastic differential equation of the form 

= + k(l  - + ( l -  Ly)2v (%-z )*  In this paper we limit ourselves to observers that satisfy 

Continuing this Way and applying condition a) we obtain a) The observer is an identity observer, that is, the 
n - 1  observer state, z,, has the same dimension as the system 

the following constraints. 

cE,II%II'<(l-a)"V(a)+k (l-a)i. state x,. 
i = O  b) The observer is linear with respect to the observed 

Remark: Theorem 2 gives sufficient conditions so that 
the origin of the stochastic process en will be asymptoti- 
cally stable in mean square in the large. Since as n+co dz,=g(z,)dt+B&, 

data (but is not a linear observer), this constraint limits us 
to observers of the form 

regardless of the initial state eo. 
Corollaly 2: If x, is generated by (2) and if there exists 

a function V(x,',%) (with % =x: - X:, (x,$c,,)= a) such 
that 

a) v(x,',%) > CII(X; ' ,<)/~~, for all x, E R ~ ' ,  C>O, 
V(0) = 0; 

b) q&,V(x,'+l,%+l)-  V(X,1,%) k- aV(x;>e"), 
for  allxflER2", k>O, O<a< 1, 
then 

where B is an n X m constant matrix. 
c) The observer is an asymptotic observer for the given 

system in the absence of system noise w, and observation 
noise 6,. The motivation for this constraint is that we 
would  like the observer to be an asymptotic observer even 
when some, or all, the components of the system state  or 
the observation are noise free. 

Under the above constraints the observer equation ( 5 )  
reduces to [36] 

dz,=f(z,)dt+B[&,-h(z,)dt] (6)  

where B is an n X m constant matrix. n - 1  
cE,I((x,",<)IJz9(1-cu)"V(a)+k 2 ( ~ - c x ) ~ .  To solve (6) we have to choose an appropriate initial 

since in general x. is unknown we have to guess, or 
Proofi Similar to Theorem 2. assume, some value for zo. Because of this the initial error 

i =  1 state zo. The best ,possible choice would be zo= xo, but 
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tions on the system structure (the functions f and h) such 
that the error, ek = xk-zk ,  between the system state  and 
the state of an observer  modeled  by  the stochastic dif- 
ference equation 

A 

Z k + l = f ( Z k ) + B C y k - h ( z k ) l  (13) 

will be exponentially bounded in mean square with  given 
exponent 0 < a Q 1 .  

Theorem 4: If the  covariances ul(xk),  u2(xk) are 
bounded and if there exist an n X m matrix B such  that 

~ ~ ( ~ f - ~ ~ h ) ( w , ) ~ ~  , for all W,ER" 

where 

then the error, ek x, - zk, is exponentially bounded in 
mean square with  given exponent a. 

Proof: The proof  is to show that there exists a 
Lyapunov-like  function satisfying the  conditions of 
Theorem 2. 

Define 

J ' ( 4 =  V ( x ~ , z , ) = ( x , - z ~ ) ' Q ( ~ ~ - ~ ~ )  

where  Q is an n X n positive definite symmetric matrix. 
Since 

J'(e~)~L(Q)IIeklI*  and hmin(Q)>O 

condition a) of Theorem 2 is satisfied. The error will be 
exponentially bounded in mean square if 

4 J % + l ) -  J'(Ek)Q k-aV(%) ( 14) 

when ek = x, - z,, and xk and zk are given by (1  1) and 
(1 3), respectively, 

and 

and wk and uk are uncorrelated normalized  random vari- 
ables, we obtain 

[ f(Xk) - Bh (Xk) 1 - [ f ( Z k )  - Bh ( 4  1 
= Jro ( V f -  B Vh)(w,)(x, - Z k ) A  (20) 

1 

where w, = sx, + (1 - s)z,. 

independent of s, we get 
Substituting (20) into (19), recalling that = x, - zk is 

(of-BVh)'(w,) ~ S Q . / ~ ( V ~ - B V ~ ) ( W , )  & E ,  
1 

0 

< ( l -  a)eiQek. (21) 

Thus, (14)  will be satisfied if 

I l ( V f - B V h ) ( w , ) l l < G  , for all w,ER". (22) 

Remark: When the nonlinear system is modeled  by the 
stochastic difference equation 

X k + l = f ( X k ) + g ( y k > + a l ( x , ) w k ,  

z k + l = f ( Z k ) + g ( y k ) + B [ y k - h ( z k ) l .  

the observer will be 

For this  observer we can show that the condition 

Il(Vf-BVh)(w,)ll QG 
for all w, E R" is sufficient for the error ek to  be  exponen- 
tially bounded in mean square. 

Example 2: Consider the discrete nonlinear system 

x l ( k + 1 ) = a s i n x , ( k ) + 2 x 2 ( k )  
X2(k+1)=X2(k)+wk 

with observation 

y (k )=cs inx , (k )+x2(k )+0 .2uk .  

Let Q = I and choose B'=[2,1]. It is easy to see that if for 
any given a, (a -2c2)+ c2 < 1 - a, then this system satis- 
fies the conditions of Theorem 4. 
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Observers for a Class of Nonlinear  Systems bounded in mean square if 

Theorems 3 and 4 provide sufficient conditions for the 
existence of explicit nonlinear observers as represented by 
(6)  and (13). These conditions can be checked off-line. 

In general, it is difficult to check whether a given matrix 
is uniformly negative semidefinite. We  would like to find 
more efficient sufficient conditions on the system struc- 
ture so that the error between the system state and the 
observer be exponentially bounded in mean square with 
given exponent a .  

Along this direction we are considering a special  class 
of nonlinear systems modeled by the stochastic differen- 
tial equation 

dx,=Ax,d t+f (x , )d t+g(y , )d t+u, (x , )dw,  (23) 

with observation equation 

dy, = Cx, dt + o2 (x,)  du, (24) 

where x,, f ( x , )  and g ( y , )  are n-dimensional vectors, y, an 
m-dimensional vector, f( e )  is continuously differentiable, 
w, and c, are, respectively, q- and r-dimensional uncorre- 
lated standard Brownian motion processes, A and C are 
constant n X n and m X n matrices, respectively, and al(x,) 
and u2(x,) are matrix functions of appropriate dimensions. 
Also, we assume that f ( x r ) ,  g(y,) ,  a , (x , )  and u2(x,) satisfy 
(Cl)  and (C2). 

We are seelung a bound on the nonlinear function f (x , )  
such that the existence of an asymptotic observer for the 
linear system, obtained by assuming f(x,)=O, will  imply 
the existence of an asymptotic observer for the whole 
system. 

Theorem 5: Given a dynamic system  modeled  by (23) 
with observation equation modeled by (24). If the covari- 
ances al(x,) ,  u2(x,) are bounded and if there exist  two 
constant n X n positive definite symmetric matrices P and 
Q, and  a constant n X m matrix B such that 

Q ( A - B C + - a 1  + A - B C + - a l  ‘ Q = - P  (25) 
2 ) (  2 l )  

{ h r m n ( P ) / 2 ~ ~ ~ ( Q ) } > l l ~ f l l m  (26) 

where II~’fllm=~~p,ER.llVfII. Then with the observer 
given  by 

dz,=Az,dr+f(z , )dt i -g(y , )dr+B[dy,-C~,dr] ,  (27) 

the error is exponentially bounded in mean square with 
exponent a .  

Proof: The proof  is io show that when (25) and (26) 
are satisfied there exists a Lyapunov-type function having 
properties 1) and 2) and satisfying the conditions of 
Theorem 1.  

Define 

V ( E r ) =  v ( ~ , , z z ) = ( x r - ~ , ) ‘ Q ( x r - z r )  

where Q is an n x n  positive definite symmetric matrix. 

c V ( q )  = e V(X,,Z,) < k -  aV(x , , z , ) .  (28) 

From this point, we  follow the same line of reasoning used 
in going from (7) to (IO) in the proof of Theorem 3. 
Assuming that (25) is satisfied, we amve  at the following 
equation: 

1 
- E ~ P E , + ~ E ; ~  QVf(w,)dS.~~d0. (29) 

Finally, for real symmetric matrices P,  we have 

Xmi,(P)IIEtl12&  EIPE, G~,~(P) l l~ , I l2 .  (30) 

By the Schwartz inequality we obtain 

IE:QVf(W,)ErI G II 5 2 1 1  ’ Ilvfllm. lIEr1l2 (31) 

where for constant matrices 1 1  Q 1 )  [A,,,( Q’Q)]1/2. 
Substituting inequalities (30) and (31) into (29) we  see 

that (28) will  be satisfied if {A~n(P)/2A,,,a(52)] > l l V f l l w ,  
which  is (26). Thus, according to Theorem 1 the  error is 
exponentially bounded in mean square with the given 
exponent a .  

Remark: It should be pointed out  that this  class of 
systems  is important since  many  systems consist of a 
linear plant with nonlinear output feedback, bounded 
nonlinear perturbations, and linear observation. 

V. STABILIZATION OF STOCHASTIC  NONLINEAR 
SYSTEMS 

Methods of using feedback control to stabilize other- 
wise unstable systems  were developed early in the Laplace 
transform based control theory of the 1950’s. Later state 
space based approaches were proposed by  several  re- 
searchers, among them Langenhop [38] and Wolovich [39] 
for deterministic linear systems, and Haussman [a] for 
linear stochastic systems. 

In the previous section, we proposed to design the 
observers for unforced nonlinear systems  which are either 
stable or unstable. One of the  most important roles of 
observers is  to provide input for feedback control design 
and thus to facilitate system stabilization. So the problem 
of stabihty of the overall feedback controlled system  with 
the observer is important. 

A cascade of a nonlinear observer and  a controller 
would not be expected to produce the optimal stochastic 
controller necessarily, but it should produce a good, 
efficient, implementable, and stable control which  may 
not be significantly inferior in expected cost to the 
theoretically ultimate optimal stochastic control. 

We first consider the stochastic continuous system 

dx,=f(x , )d t+u,d t+a , (x , )hv ,  (32) 

(33) dy, = h ( x r )  dt + u2 ( x , )  dct 

Clearly,-V(s) has properties 1) and 2) and condition a) of where (32) and (33) satisfy the assumption of (3) and (4) 
Theorem 1 is satisfied. The error will be exponentially and the unforced system of (32) is unstable, u, is an 
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additive feedback control which  is designed to stabilize VI. CONCLUSIONS 
the unstable system, that is, to steer its state to the origin. 
However, we cannot design ut to be a .function of x,  since 
the state of the system is not available for direct measure- 
ment. In order to implement the feedback control law we 
need the estimate of the state. Assume u, = g(z,), so the 
observer for (32)  and (33) will  be 

Now the design problem is to choose a proper continu- 
ously differentiable function g(z , )  and a constant matrix B 
such that both the state of the system (32)  and the error 
et = x,  - J ,  will be exponentially bounded  in mean square. 
The following theorem provides sufficient condition. 

Theorem 6: If f ( 0 )  = g(0 )  = 0 and if there exists a 2n X 
2n positive definite symmetric matrix Q, a constant n X m 
matrix B such that the 2n X 2 n  matrix QP is uniformly 
negative semidefinite, where 

Then  both the state xr of (32) and the error E, = xt - zt are 
exponentially bounded in mean square with exponent a. 

Next we consider the discrete system 

where the unforced system of (35)  is unstable and (35) and 
(36) satisfy the assumptions of (1 1) and (12). 

To stabilize the system we assume that uk = g(zk )  where 
g ( . )  is continuously differentiable, so the observer for 
system (35) and (36)  is  given  by 

The following theorem gives a sufficient condition so that 
both the state of (35)  and the error ek= xk-  zk will be 
exponentially bounded in mean square. 

Theorem 7: If f(0) = g(0)  =O and if there exists a con- 
stant n X m matrix B such that IIP 1 1  < - for all 
w, E R n, where 

then both the state x, of (35)  and the error ek = xk - zk are 
exponentially bounded in mean square with  given  expo- 
nent a. 

Remark: The proofs of Theorem 6 and Theorem 7 are 
the applications of Corollary 1 and Corollary 2. They are 
essentially the same as given in the proofs of Theorem 3 
and Theorem 4. 

In this study we used Lyapunov-like methods to obtain 
sufficient conditions required to design exponential ob- 
servers for nonlinear stochastic systems (continuous and 
discrete). An observer is a dynamic system driven by the 
observed output of the system and designed in such a way 
that the error between the observer output  and  the system 
state is exponentially bounded in mean square. Therefore, 
we could use the output of the observer as  an estimate of 
the state. It should be noted that there is no optimality 
requirement for designing the observer in this paper. 

We also developed sufficient conditions so -that a feed- 
back control that is a function of the observer output  (the 
estimated system state) will stabilize an otherwise unstable 
system. 

There are several  possible directions in which this re- 
search can be continued. Some of them are as follows. 

1) Remove the constraint that the observer be linear 
with respect to the observed data and look for an observer 
of the form 

dJ,=f(z,)dt+B(z,,y,)[dy,--hz,)dtI 

Zk+ 1 = f ( 4  + B (ZkYYk) [ Y k  - h ( 4  1 
for continuous systems, or 

for discrete systems, where here B is an n X m -matrix 
function instead of a constant matrix. 

2) Develop an observer whose structure depends on the 
noise covariances al (x)a; (x)  and a z ( x ) u ~ ( x )  in  addition  to 
the system structure so that a lower mean-square error 
may be obtained. 
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