An Overview on Repetitive Control --- what are the issues and where does it lead to?

Yutaka Yamamoto

Dept. AACDS, Grad. School of Informatics Kyoto University

Agenda

- \bullet • What is repetitive control?
- \bullet **.** Its historical background
- What are the issues/difficulties?
- **Theoretical Problems**
- \bullet **• ILC (Iterative Learning Control) and** Repetitive Control
- **Future issues**

Agenda

- \bullet **What is repetitive control?**
- \bullet **Its historical background**
- What are the issues/difficulties?
- **Theoretical Problems**
- \bullet **• ILC (Iterative Learning Control) and** Repetitive Control

• Future issues

Selected References

- **Inoue, Nakano, etc.: IFAC Congress '81;** Introduction of the idea
- Hara, Yamamoto et al.: IEEE Trans. '88, Stability analysis, design methods
- Yamamoto and Hara: IEEE Trans. AC, '88; Internal model principle in a general context
- Hara et al.: Proc. 29th CDC '90, digital repetitive control
- Yamamoto: 2nd ECC (Groningen) '93 "Perspectives in Control" (Birkhauser); Survey from the viewpoint of ∞-dim. system theory

What does it do?: Examples

- Repetitive control intends to track/reject arbitrary periodic signals of a fixed period
- **Tracking/Disturbance rejection of periodic** signals appear in many applications
	- Hard disk/CD drives
	- \blacksquare Electric power supply
	- Robotic motions
	- Steppers in IC productions
	- And many others

History: The First Example

\bullet • Magnet power supply for a proton synchrotron (Nakano and others)

Ring Magnet

Control Objective:

\bullet • Control the power supply curve (periodically) to the following shape:

Difficulties

- \bullet • Difficult to attain 10E-4 precision by computing the inverse system
	- \blacksquare Identification was difficult up to this precision
- \bullet Robustness requirement (robust tracking against plant uncertainty)
- \bullet Thus the 1st trial failed.
- z *What to do?*

Solution (Nakano et al.'81)

- \bullet • The reference signal is *periodic.*
- \bullet Make the system learn the desired input by itself.
	- **E** Feed the reference into the plant;
	- \blacksquare Store the error signal for 1 period;
	- Then feed the error back into the plant, and so on.

\bullet **.** If we are lucky, we are in business.

The General Construction

Periodic reference signal

+

+

-

+

Repetitive Compensator

e

Ls

Periodic signal generator

Agosto 28, 2001 Periodic Control Workshop

P $\Big($ *s*)

 $C(s) P_0(s)$

Agenda

- \bullet • What is repetitive control?
- \bullet **.** Its historical background
- z **What are the issues/difficulties?**
- **Theoretical Problems**
- \bullet **• Relationships with ILC**
- **Future issues**

Basic Questions:

- \bullet What does this system amount to?
- \bullet • Is the construct mandatory?
- \bullet **• Stability condition**
	- Easy to stabilize?
- \bullet • If not easy to stabilize, what to do?

What does this amount to?

- \bullet • Servomechanism control system with periodic signal generator
- \bullet • Attempts to track any periodic signal of a fixed period L
- \bullet • Repetitive compensator works as an internal model for periodic signals

Is this construct mandatory?

\bullet • If we want to track any periodic signal, yes.

- \bullet • What is the "minimal" system that generates all periodic signals of period L?
- \bullet • Minimal realization = $1/(\exp(Ls) - 1)$
	- \blacksquare In what sense is this minimal?
	- \blacksquare How can this be shown?

Minimality of 1/(exp(Ls)-1)

Fourier series expansion $r(t) = \sum$ $r(t) = \sum r_n \exp(2n\pi j t/L)$

∞

=−∞

n

- ⇒ Need poles at 2n ^πj/L (Internal Model Principle)
- \Rightarrow q(s) := s Π (s 2n πj /L) ?
- This product diverges Need Hadamard factorization

=1*n*

 \Rightarrow q(s) = s Π (1 $-$ Ls/2n π j)

$$
q(s) = s \prod^{\infty} (1 + L^2 s^2 / 4n^2 \pi^2)
$$

Repetitive compensator **Skip Repetitive Compensator**

The Role of Repetitive

- Compensator
	- \bullet • Generates any (locally L²) periodic signal of period L with suitable initial function stored in the delay
	- \bullet Works as the internal model for periodic signals
	- In what sense is this *minimal*?
	- \bullet • Not trivial in a more general context due to infinitely many unstable poles

An Infinite-dim. Representation

Framework

- z -- Yamamoto (SIAM'88; TAC'88)
- Pseudorational impulse responses
- \bullet y = π (q^{-1*}p^{*}u), q, p $\in \mathcal{E}'$
- $q \in \mathcal{E}' \Leftrightarrow q \wedge (s)$ satisfies i) entire, ii) the Paley-Wiener estimate
	- \blacksquare |q^(s)| \leq (1+|s|)^mexp(a|Re s|)
- d is contained as an internal model in $q \Leftrightarrow$ d|q \Leftrightarrow q=d*r in $\textit{E}' \Leftrightarrow$ q/d in the Paley-Wiener class
- $\bullet \Rightarrow$ General internal model principle

Tracking and Stability Conditionsy \bullet S= 2n π j/L, n=0, \pm 1, \pm 2, ... are transmission zeros of $W_{\text{er}}(s)$. • $r(t) = \sin(2n \pi j t/L)$ becomes unobservable *LseP*(*s*) r+e + -+ $1+P(s)$ 1 $1+P(s)/(e^{Ls}-1)$ $(s) = \frac{1}{s}$ $e^{LS} - 1 + P(s)$ *e P*(s)/(e $W_{\alpha s}$ (s \sim 1 \sim \sim $\frac{1}{s}$ \sim $\frac{1}{s}$ \sim $\frac{1}{s}$ *Ls* e^{rt} ^{Ls} $1 + P(s)/(\sigma^{Ls} - 1)$ e^{Ls} $-1 +$ $\frac{1}{1+P(s)/(e^{Ls}-1)} = \frac{1}{e^{Ls}-1}$ =

• Tracking accomplished under closed-loop stability

Equivalent diagram for $W_{er}(s)$

Problems in Stabilizability

- \bullet Condition close to necessity
- But almost never satisfied unless P is biproper (P(∞)≠0)
- \bullet **• The stability is almost entirely governed** by the feedback loop of the repetitive compensator
- \bullet • Requires too much: tracking to arbitrary periodic signals (even discont. ones)

Agosto 28, 2001 Periodic Control Workshop Response of a repetitive control system that is not Internally stable $P(s) = (15s+15)/(2s^2+20s+15)$

Stability Problems

+

 $+$

α

Ls

e

 \bullet • The poles asymptotically approaches the axis $\textsf{Re}\; \textsf{s} = \textsf{log}\; \alpha$, irrespective of P unless it has a feedthrough term

 \bullet **• Impossible to stabilize exponentially** unless P is biproper

The transfer function W(s) can still belong to H^∞

 \bigcirc

Difficulty in Stability/Stabilizability

- \bullet W(s) (closed-loop transf. fcn.) has infinitely many poles approaching Re s = 0 (neutral d-d systems; Hale)
- \bullet • But W(s) can still belong to H[∞] (Logemann, SCL 88)
- Thus L² stable but not exp. stable
- \bullet • Exp. stability \Leftrightarrow poles \subset {Re s \leq -c $<$ 0}
- \bullet • Can never be achieved for strictly proper plant

Remedy

 \blacksquare

 \blacksquare

 \blacksquare

- 1. Introduce a low-pass filter into the delay
	- Exact internal model is lost
	- Problems in high-freq. tracking
- 2. Make it a discrete-time system
	- Lots of confusion (to be discussed later)

Modified Repetitive Control **System**

 $f(s)$: low-pass filter

 \bullet $f(s)$ makes this system a "retarded" system; poles escapes away from the imaginary axis

-

Agosto 28, 2001 Periodic Control Workshop

y

Stability Condition

: H^∞ 1 $||f(s)(1-C(s)P(s)||_{\infty}$ < 1: H^{∞} 1 - block problem − $-C(s)P(s)\big\|_{\infty}$ < 1 *H*

\bullet • Delay independent condition (thus finitedimensional)

\bullet Infinite-dim. Design:

■ Perry & Ozbay (ASME 97), Weiss (MTNS96)

Agosto 28, 2001 Periodic Control Workshop Responses of a modified repetitive control system responses of a modified repetitive control system in skip

To Summarize

- \bullet • Precise tracking to all periodic signals ⇒ $1/(\mathrm{e}^{\mathsf{L}\mathsf{s}}$ – 1) is mandatory (Yamamoto-Hara TAC88)
- \bullet • Rel. deg $\geq 1 \Rightarrow$ difficulty in stabilizability
	- ⇒ no exact repetitive control
- \bullet \Rightarrow modified repetitive control
	- H∞ model matching problem (finite-dim.)
	- \blacksquare Infinite-dim. design is also attempted (Perry and Ozbay Trans ASME 97 ;Weiss MTNS96)

 \bullet Difficulty arising from ∞-dimensionality

Discrete-time counterpart

- **Trade-off between stabilizability and tracking.** • Make it digital (Tomizuka et al. ASME89, and others):
	- No problems for stabilizability (aside from the obvious requirements)
	- \blacksquare In particular, no problem (at least superficially) in the relative degree of the plant if we allow delayed tracking
	- Can lose trackability in the intersample behavior
	- Needs some framework to assure tame intersampling behavior
- Lots of historical confusion (and still are).

Digital Repetitive Control System

Confusion

• The worst one:

- Everything is resolved by going over to discrete-time: no problems in stability and tracking
- Much confusion in many submitted articles
- **•** Facts:
	- Reference signals are cont.-time; Tracking achievable only at sampled points: No capability for tracking in the intersample
	- Often very large intersample ripples (Hara, Kondo, etc., CDC '90) Numerically fragile
	- Needs a framework for discussing intersample ripples and attenuates the high-freq. components

Ripples in Digital Repetitive **Control** Hara, Kondo, etc., CDC '90

Tracking is achieved at sampled points But it can exhibit large intersample ripples

Why?

- \bullet Not quite understood as yet (not much follow-up study, except by Hara et al. ACC92)
- **However, note that**
	- \blacksquare Relative degree = 2
	- \blacksquare not stabilizable in the cont.-time
- What cannot be achieved in the continuous-time case can be achieved in digital?

Remedy?

- \bullet • This problem is not well explored in the literature (except one follow-up by Hara)
- \bullet • The mainstream of study is focused around digital repetitive control without much attention on the intersample behavior
- \bullet Note: Just filtering out the reference signal may not be enough (previous example)

Nonlinear Repetitive Control

- Omata, Hara & Nakano J. Robotic Syst.87; passivity theory
- Ghosh and Paden TAC00; some extensions
- Lucibello CDC93; new internal model principle(?)

Nonlinear Repetitive Control for a robotic motion By Omata, Hara and Nakano (87)

Some Remaining Issues

- For LPTV systems: Sison & Chong (CDC97) …
- Many search algorithms for (nonlinear) ILC: Driessen, Sadegh, et al. (CDC98)
- **Internal model principle: de Roover and Bosgra** (ACC97, CDC97); purely discrete-time; no intersample consideration; unification of repetitive and ILC
- Robustness issues: Yamamoto & Hara (Automatica 92), Lee & Smith (CDC96); Weiss (MTNS96; Automatica)
- **Generalization to multiple periods: Chang & Suh** (CDC96), Weiss,
- Applications to mechanical systems: Tomizuka, Sadegh and others

Agenda

- \bullet • What is repetitive control?
- \bullet **.** Its historical background
- What are the issues/difficulties?
- **Theoretical Problems**
- \bullet **• Relationships with ILC**
- **Future issues**

ILC (Iterative Learning Control)

- \bullet Arimoto, Miyazaki, Kawamura and others
- \bullet • Some ignored relationships with repetitive control
- \bullet Actually based on almost the same idea

Basic Idea

\setminus $=$ $\sum \begin{cases} x = f(x) + f(x) \\ y = Cx \end{cases}$ $\int x = f(x) + Bu$ Objective: Given r ∈ L 2[0,T], find u_{opt} such that $y = r$

- \bullet Finite time problem; initial state x_0 is given
- Initialize appropriately

 \int

- Repeat
	- $u_{k+1} = u_k + \Gamma d(e_k)/dt$
		- under resetting of initial states

Convergence Condition

I −*CB* Γ < 1 (Arimoto et al.)

• Observation:

- CB must be full rank
- Very close to the repetitive control small gain condition

\bullet The trick:

- \blacksquare Relative degree is 1 (coefficient: CB)
- Main term is CB
- To make the feedthrough term, introduce the derivative of e_k
- The rest can be estimated by the Gronwall inequality using the finite-time tracking property

Relationships

- Hence close to ||I PC|| < 1 (repetitive control stability condition)
- The difference is the finite-time property (hence only CB is in the condition)
- \bullet Differentiation \rightarrow \rightarrow feedthrough term
- \bullet **• Stability is of less importance (finite**time tracking) → \rightarrow applicable to an unstable systems

x
\n
$$
\hat{x}_1(t) = x_2(t)
$$
\n
$$
\hat{x}_2(t) = x_1x_2(t) + u(t)
$$
\n
$$
y(t) = x_1(t) + x_2(t)
$$
\n
$$
r(t) = \sin t, 0 \le t \le 2
$$

Agosto 28, 2001 **Tracking to sin t via ILC** Periodic Control Workshop

Agenda

- \bullet • What is repetitive control?
- \bullet **.** Its historical background
- What are the issues/difficulties?
- **Theoretical Problems**
- \bullet **• ILC(Iterative Learning Control) and** Repetitive Control

• Future issues

Some Current Issues in ILC

- \bullet Adaptive ILC (Rogers & Owens)
- \bullet • ILC for nonminimum phase plants
	- Basically not a problem; but nonminimum phase case tends to produce large inputs
- \bullet **• Relationships with repetitive control**
- Nonlinear ILC

To Summarize

- Difficulty: trade-off between stability (error convergence for ILC) vs. high-freq. tracking
- Need not be easily compromised
- Low-pass filter \rightarrow \rightarrow modified rep. control
- **Or ZPETC (Tomizuka ACC88) dicrete-time variant**
- Discrete-time rep. control: regular finite-dim. system
	- Not difficult if intersample behavior is not taken into account
	- \blacksquare If the intersample behavior (high-freq. performance) is considered, it requires the modern sampled-data theory
	- Not much has been done in this direction: Langari-Francis (ACC94), Ishii-Yamamoto (CDC98)

Some Future Issues

- \bullet Study by the sampled-data theory; note: Good sample-points behavior need not mean good performance in intersample behavior
- **Further robustness studies**
- \bullet • More continuous-time analysis
- \bullet • Multirate study
	- To supplement the intersample behavior
	- Multi-period repetitive control

Literature

\bullet Robustness studies

■ Yamamoto & Hara Automatica 92; Lee & Smith CDC96; WeissMTNS96

• Nonlinear repetitive control

Omata, Hara & Nakano J. Robotic Systems 87; Ghosh & Paden TAC00;

• Digital repetitive control

- Hu & Tomizuka ASME 94,
- Some discrete-time design
	- Fabian ACC99; Kim & Tsao ACC01;
- **Parameter space design**
	- Guvenc ACC 01;

• Ripple Analysis and Attenuation

- Hara, Tezuka & Kondo CDC00; Hara Kawamura & Sung ACC92
- Sampled-data design
	- Langari & Francis ACC94; Ishii & Yamamoto CDC98
- Adaptive repetitive control
	- Tsao & Tomizuka ASME94,

Continued

• Discrete-time internal model principle

De Roover & Bosgra CDC97

• Applications

 Yau & Tsai (Moter control) ACC99; Zhou, Wang & Xu ACC00; Zhou and Wang CDC00

• Other Design Methods

- Chen, Longman CDC99; Kondo et al. CDC97, Sison & Chong and many others
- Chen & Longman (smooth updates) CDC99 strange reasoning for the small gain condition \parallel I- \Box G \parallel <1
- Korogl u & Morgul (LQ design) ACC99

• LPTV systems

- Sison & Chong CDC97
- Dual rate problem
	- Chang & Suh CDC96, Yamada et al. CDC00

Continued

• ILC (many others)

- K. L. Moore(Book; CDC99)
- Ŧ Driessen, Sadegh and Kwok (Line search) CDC98
- Adaptive
	- French, Munde, Rogers and Owens CDC99

Comments

\bullet ZPETC (Tomizuka and others; Zero Phase Error Tracking Control) introduces a low-pass filter to take care of high frequencies (similar to spectral factorization); high-freq. roll-off to take care of robust stability

 \bullet • Others often ignore this. Just some ways of stabilizing a special discretetime system