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In this paper, three control methods—iterative learning control (ILC), repetitive control (RC), and run-to-
run control (R2R)—are studied and compared. Some mathematical transformations allow ILC, RC, and R2R
to be described in a uniform framework that highlights their similarities. These methods, which play an
important role in controlling repetitive processes and run-based processes, are collectively referred to as
learning-type control in this paper. According to the classification adopted in this paper, learning-type
control has two classes—direct form and indirect form. The main ideas and designing procedures for these
two patterns are introduced, separately. Approximately 400 papers related to learning-type control are
categorized. Statistical analysis of the resulting data reveals some promising fields for learning-type con-
trol. Finally, a flowchart based on the unique features of the different methods is presented as a guideline
for choosing an appropriate learning-type control for different problems.

� 2009 Elsevier Ltd. All rights reserved.
Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1590
2. Overview of ILC, RC, and R2R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1590
2.1. Iterative learning control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1590
2.2. Repetitive control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1591
2.3. Run-to-run control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1592
2.4. Comparison and uniform formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1592
3. Real-time information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1593

3.1. Real-time ILC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1593
3.2. Real-time RC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1593
3.3. Real-time Information and R2R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1594
3.4. Fusion of ILC and RC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1594
4. Direct learning-type control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1595

4.1. Direct ILC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1595
4.2. Direct RC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1595
4.3. Direct R2R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1595
5. Indirect learning-type control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1595

5.1. Indirect ILC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1596
5.2. Indirect RC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1596
5.3. Indirect R2R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1596
6. Literature overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1596
7. Promising fields and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1597
8. Guidelines for choosing learning-type control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1598
ll rights reserved.

emical Engineering, University of California Santa Barbara, Santa Barbara, CA, USA.
le).

http://dx.doi.org/10.1016/j.jprocont.2009.09.006
mailto:frank.doyle@icb.ucsb.edu
http://www.sciencedirect.com/science/journal/09591524
http://www.elsevier.com/locate/jprocont


1590 Y. Wang et al. / Journal of Process Control 19 (2009) 1589–1600
9. Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1599
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1599
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1599
1. Introduction

The control methods of iterative learning control (ILC), repetitive
control (RC), and run-to-run control (R2R) were originally proposed
in different fields, to address different problems, and were proposed
by different authors; therefore, they have different formulations,
different specializations, and different defining characteristics. All
of them, however, use previous information to design a new control
signal. That is to say, these methods can ‘‘learn” from experience to
improve control performance, so ILC, RC, and R2R are categorized as
learning-type control. In this paper, these three methods are re-
viewed in alphabetical order and given equal priority.

The similarities between ILC, RC, and R2R have been noted by
other scholars. For example, in [1], ILC and RC were compared
based on experimental results. Some similarities between ILC and
R2R were mentioned in [2]. In 2007, Prof. J.H. Lee and Prof. K.S.
Lee presented an overview of ILC [3], in one section of which RC
and R2R were compared with ILC. However, to the best knowledge
of the authors, there is no existing paper in which these three
methods have been compared in detail. This article will describe
ILC, RC, and R2R in a uniform mathematical framework and illus-
trate their essential similarities.

Many books and surveys have focused on ILC, RC, or R2R,
individually. Each of them cite many references; for example, an
overview paper on ILC [4] has 514 references; a survey on repetitive
control [5] includes 107 references; while a survey about run-to-
run control [6] cites 42 references. It is inappropriate to re-cata-
logue all those citations. Hence, only references indispensable to
this paper are cited; those references not cited have been omitted
for space concerns only. To capture the information in additional
references, about 400 articles are reviewed and categorized in Sec-
tion 6; however, the majority of them are not cited as references.

The preceding categorization reveals which fields have numer-
ous reported works and which fields are more open in terms of re-
search opportunities. Based on these observations, some promising
directions will be introduced, which will be helpful for theoretical
studies in learning-type control.

In general, for a process that is repetitive and/or cyclic in nature,
the learning-type control method should be the first choice for
control. The specific type of learning-type control should then be
selected according to the characteristics of the process. Some
guidelines for choosing the appropriate learning-type control
method for different problems will be introduced; these will be
valuable for people who are interested in using learning-type con-
trol methods, particularly for non-experts.

The objectives of this paper include: (1) describing ILC, RC, and
R2R in a uniform mathematical framework and illustrating their
similarities; (2) making clear their distinctions; (3) revealing some
promising directions for the future; and (4) presenting guidelines
for choosing the appropriate learning-type control methods.

In the following, both ‘‘continuous process” and ‘‘continuous
system” will be mentioned; however, they are often taken to be
the same thing by mistake; hence, their definitions will be pre-
sented first. Most processes can be divided into two classes—batch
processes and continuous processes. In general, batch processes,
which run intermittently, are best suited to low-volume and
high-value products, while continuous processes are good at mak-
ing high volume products continuously. A dynamic system is a
function of time, and it likewise can be classified in two ways. If
the time variables only hold discrete values, the system is called
a discrete-time system, or discrete system for short. While if the time
variables hold continuous values, the system is considered a con-
tinuous-time system, or continuous system for short. Hence, ‘‘contin-
uous process” and ‘‘continuous system” are different concepts
based on distinct standards. A continuous process may be dis-
crete-time or continuous-time. Similarly, a continuous system
can be achieved by a continuous process as well as a batch process.

This paper focuses mainly on discrete systems, for two reasons.
First, discrete learning-type control is easier to use. Information
storage is difficult in continuous systems, so in practice continuous
systems are usually approximated by discrete models for the pur-
pose of designing a learning-type controller. Second, the continu-
ous system under repetitive control is infinite dimensional, while
the discrete system under repetitive control is finite dimensional,
which is easier to study. In addition, most learning-type controls
have been used in linear systems, and even when the system is
nonlinear, the learning-type control is designed based on a linear
model of the nonlinear system in most cases. Hence, the systems
considered in this paper are limited to linear discrete systems.

The rest of this paper is organized as follows: The conventional
learning-type methods are introduced and compared in Section 2.
Section 3 discusses how to use real-time information, which intro-
duces one of the main differences between ILC/RC and R2R. Direct
learning-type control is discussed in Section 4 and the indirect
learning-type control is introduced in Section 5. Topical publica-
tions are reviewed and categorized in Section 6. A brief outlook
is presented in Section 7. A guideline for choosing the appropriate
learning-type control law is introduced in Section 8. Section 9 gives
the conclusions.
2. Overview of ILC, RC, and R2R

2.1. Iterative learning control

In 1978, Uchiyama presented the initial explicit formulation of
ILC in Japanese [7]. In 1984, Arimoto et al. first introduced this
method in English [8]. These contributions are widely considered
to be the origins of ILC. One motivation for the development of
ILC is the industrial robot, which repeats the same task from trial
to trial. Humans can learn from repeat training, and scholars have
tried to find a scheme to implement such a learning ability in the
automatic operation of dynamic systems. This scheme is known
as iterative learning control, and has mainly focused on batch
processes.

A batch process, which repetitively performs a given task over a
period of time (called a batch or trial), can be described as follows:

xðt þ 1; kÞ ¼ Axðt; kÞ þ Buðt; kÞ þwðt; kÞ
yðt; kÞ ¼ Cxðt; kÞ þ vðt; kÞ

�
ð1Þ

t ¼ 0;1; . . . ; T � 1; k ¼ 1;2; . . .

where x 2 Rn; u 2 Rp; y 2 Rm; w 2 Rn, and v 2 Rm denotes states,
inputs, outputs, disturbances or uncertainties, and measurement
noise, respectively; A, B, and C are the system matrices with appro-
priate dimensions; t denotes different time step and T is the dura-
tion of each batch, and k is the batch index. Because the initial
state of each batch can usually be reset in many applications, the
following assumption is widely used in existing publications,
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xð0; kÞ � x0 ð2Þ

The common control objective for batch processes is to make the
outputs track the reference trajectory yr(t) as closely as possible.
Due to (2), y(0, k) � y0, where y0 is available. Hence, yr(0) = y0 is re-
quired in the earlier period of development of ILC [8]. The results of
theoretical analysis show that this constraint on the reference is not
necessary [9]; therefore, the easiest way to design the reference is
such that yr(t) � Yr, where Yr is also called the target for the output.
The initial condition for ILC is an interesting problem; some further
discussion of this problem will be provided in Section 3.4.

One can define

eðt; kÞ¼̂yrðtÞ � yðt; kÞ ð3Þ

as the tracking error. One of the objectives of ILC is that
limk!1eðt; kÞ ¼ 0. The simplest formulation of ILC may be:

uðt; kÞ ¼ uðt; k� 1Þ þ K ILCeðt; k� 1Þ ð4Þ

The inputs in the current batch are determined by the inputs of the
previous batch plus the proportional contribution of tracking error
in the previous batch, where KILC is the learning gain matrix. This
type of ILC is called proportional-type ILC (P-type ILC). In most
cases, P-type ILC is used as follows:

uðt; kÞ ¼ uðt; k� 1Þ þ K ILCeðt þ 1; k� 1Þ ð5Þ

For a delay-free system in Eq. (1), if x(t, k) = x(t, k � 1) and
u(t, k) = u(t, k � 1), then e(t + 1, k) can be approximated to
e(t + 1, k � 1). Therefore, e(t + 1, k � 1) can be considered the pre-
diction of e(t + 1, k) in some sense; hence, it is reasonable using
e(t + 1, k � 1) to update u(t, k), which will determine e(t + 1, k), as
shown in (5). If the information after t in previous batch is used
to design u(t, k), this kind of ILC is called phase-lead type ILC [10]
or anticipatory-type ILC [11].

ILC can be described in the following general formulation:

uðt; kÞ ¼ Q ILCðuðt; k� 1ÞÞ þ rðt; kÞ ð6Þ

where QILC(u(t, k � 1)) is called the feedforward part of ILC; r(t, k) is
called the updating law for ILC; QILC(�) is called the Q-filter. Specially,
if QILC(u) = Q � u, where Q is a scalar within (0, 1), it is also called the
forgetting factor. A frequently used form of Q-filter is

Q ILCðuðt; kÞÞ ¼ a1uðt þ 1; kÞ þ a0uðt; kÞ þ a1uðt � 1; kÞ ð7Þ

where 2a1 + a0 = 1. In this case, the Q-filter can be considered a
weighted-average operator in a symmetrical window. In general,
the Q-filter can improve the robustness of ILC to high frequency
Fig. 1. Generator of

KRC
R

-

+ E
+

+

Fig. 2. Block diagram of the si
uncertainties but results in non-zero final tracking error. In much
of the literature, QILC(u) = u. Most linear updating laws can be writ-
ten in the following form:

rðt; kÞ ¼ LILCðeðt; k� 1ÞÞ ð8Þ

where LILC(�) is called the L-filter. For example, if LILC(e) = KILC � e,
this leads to a P-type ILC; if LILC(e(t, k)) = KILC � (e(t, k) � e(t � 1, k)),
this is a D-type ILC.

2.2. Repetitive control

In 1981, the concept of repetitive control was originally devel-
oped [12,13]. The initial motivations and representative examples
include the rejection of periodic disturbances in a power supply
control application [12] and the tracking of periodic reference in-
puts in a motion control application [13]. RC is mainly used in con-
tinuous processes for tracking or rejecting periodic exogenous
signals. In most cases, the period of the exogenous signal is known.

The internal model principle (IMP) proposed by Francis and
Wonham [14] is the theoretical foundation of RC. According to
IMP, to track or reject a certain signal without steady-state error,
the signal can be regarded as the output of an autonomous gener-
ator that is inside the control system. Any periodic signal with per-
iod T can be generated by the free time-delay system shown in
Fig. 1 with an appropriate initial function. A controller containing
this generator is known as a repetitive controller.

Consider a linear system Y(z�1) = G(z�1)U(z�1), where z�1 is the
backward shift operator; G is the transfer function; and Y and U are
the z-transformations of outputs and inputs, respectively. The con-
trol objective is such that the output follows a given trajectory
R(z�1) with known period T. The simplest RC for this problem
can be designed as shown in Fig. 2, where KRC is termed the repet-
itive control gain. This kind of RC is also called P-type RC. The con-
trol objective of RC is to find an appropriate KRC such that the
tracking error E(z�1) converges to zero as time approaches infinity.
The transfer function for this RC is

Uðz�1Þ ¼ KRCz�T

1� z�T Eðz�1Þ ð9Þ

A more general formulation of RC is shown in Fig. 3, where QRC(z�1)
and LRC(z�1) are called the Q-filter and the L-filter, respectively. The
transfer function for the general RC is

Uðz�1Þ ¼ z�T LRCðz�1Þ
1� z�T Q RCðz�1Þ Eðz

�1Þ ð10Þ
z-T

periodic signal.

z-T G(z-1)
Y

U

mplest repetitive control.



z-T G(z-1)
YR

-

+ E

U+

+
LRC(z-1)

QRC(z-1)

Fig. 3. General structure of repetitive control.

Table 1
Comparison of ILC/RC (ILC and RC) and R2R. ILC denotes iterative learning control; RC denotes repetitive control; R2R denotes run-to-run control.

ILC/RC R2R

Problem Repetitive process Run-based process

ILC RC
Batch process Continuous process with periodic input;

periodic continuous process

Model Dynamic model Static model

ILC RC
State space model Transfer function

Output Frequent measurement Sparse measurement
Input Varying profile No profile OR

fixed profile structure

Control structure t-Direction Closed-loop Open-loop
k-Direction Closed-loop Closed-loop
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There are various schemes to design the Q-filter and the L-filter to
improve the robustness of RC. A frequently used form of Q-filter is

Q RCðz�1Þ ¼ a1zþ a0 þ a1z�1 ð11Þ

where 2a1 + a0 = 1. Two frequently used forms for L-filter are
LRC(z�1) = KRC and LRC(z�1) = KRC � (1 � z�1).

2.3. Run-to-run control

Run-to-run (or run-by-run) control was first proposed by Sachs
and his co-workers at MIT in the beginning of 1990s [15,16]. The
main motivation for development of run-to-run control is the lack
of in situ measurements for the product qualities of interest. A typ-
ical example is semiconductor manufacturing, where the goal is to
control qualities, such as film thickness or electrical properties,
which are difficult or impossible to measure in real-time. The con-
sidered process can be divided into several runs, which are similar
to batch processes but more extensive, so it is named run-based
process in this paper. Because only sparsely sampled outputs are
available, a linear regression model is used to describe the process:

yðkÞ ¼ AuðkÞ þ bðkÞ þ eðkÞ ð12Þ

where k = 1, 2, . . . denotes run index; y 2 Rm is the system output;
u 2 Rp is the input (recipe); A is the slope coefficients matrix; b is
the drift coefficients matrix; and e denotes disturbances. For simplic-
ity, it is assumed that m = p in this section; for other cases, please
refer to pages 72–74 in [17]. The target for y is denoted as y*. If A
and b is known, then the optimal control for system (12) is

uðkÞ ¼ A�1ðy� � bðkÞÞ ð13Þ

Mismatches between model and system are unavoidable in practi-
cal application, and system variations occur from run-to-run some-
times, so an iterative scheme is proposed to update the estimation
of b:

bðkÞ ¼ k½yðk� 1Þ � Auðk� 1Þ� þ ð1� kÞbðk� 1Þ ð14Þ

The preceding algorithm is called exponentially weighted moving
average (EWMA) filter [17], where 0 < k < 1 is an adjustable tuning
parameter for the EWMA filter. Combining (13) with (14) produces
bðkÞ ¼ kfyðk� 1Þ � AA�1½y� � bðk� 1Þ�g þ ð1� kÞbðk� 1Þ
¼ bðk� 1Þ þ k½yðk� 1Þ � y�� ð15Þ

hence

uðkÞ ¼ uðk� 1Þ þ kA�1½y� � yðk� 1Þ� ð16Þ

This algorithm is called EWMA-type R2R or P-type R2R. A more gen-
eral form of R2R is as follows,

uðkÞ ¼ auðk� 1Þ � rðkÞ ð17Þ

where 0 < a < 1 is the forgetting factor and r(k) is called the updating
law for R2R.

2.4. Comparison and uniform formulation

From (6) and (10), it can be found that the control signals pro-
duced by ILC and RC are functions of time, so the inputs have pro-
file in each batch or period. From (17), it is known that the inputs
determined by R2R are constant in each run; in other words, they
have no profile. In [18], a general procedure algorithm was intro-
duced to design R2R. In the first step of this algorithm, the input
profile for run k, uk(t), was parameterized as U(t, vk). Then the con-
ventional R2R was used to update vk. Therefore, vk has no profile;
however, the final control signal uk(t) has a profile, but the struc-
ture of the profile function is fixed. These statements are included
in Table 1. To achieve frequent updates of the control signal from
ILC and/or RC, there should be multiple measurements; while in
R2R, sparsely sampled output measurements are enough to allow
for the control update.

Therefore, the differences between ILC, RC, and R2R are reason-
ably distinct. Next, it will be shown that they can be described in a
uniform framework. First, RC will be reformulated in time-domain.

From (10), it is found that

uðtÞ ¼ Q RCuðt � TÞ þ LRCeðt � TÞ ð18Þ

For convenience, the following operator is introduced.

�nð�t; �kÞ¼̂ nðtÞ where �k ¼ bt=Tc; �t ¼ t � �kT; n ¼ u; y; e ð19Þ
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b�c returns the nearest integer for � towards minus infinity. Opera-
tion (19), called the batch-operator for short, divides the continuous
sequence into several batches. By using the batch-operator, (18) can
be rewritten as

�uð�t; �kÞ ¼ Q RC�uð�t; �k� 1Þ þ LRC�eð�t; �k� 1Þ ð20Þ

From (7) and (11), it can be seen that QILC and QRC are identical; sim-
ilarly, LILC and LRC are also identical. According to (6) and (8), RC has
been transformed to ILC. Next, ILC will be transformed to R2R. From
(1), it is found that

�YðkÞ ¼ ��A�UðkÞ þ �bðkÞ þ �eðkÞ ð21Þ

where

�YðkÞ¼̂

yð0; kÞ
..
.

yðT � 1; kÞ

2
664

3
775; �UðkÞ¼̂

uð0; kÞ
..
.

uðT � 1; kÞ

2
664

3
775

�A¼̂

0 0 � � � 0
CB 0 � � � 0
..
. . .

. . .
. ..

.

CAT�2B � � � CB 0

2
66664

3
77775; �bðkÞ¼̂

C

CA

..

.

CAT�1

2
66664

3
77775xð0; kÞ

�eðkÞ¼̂

0 0 � � � 0
C 0 � � � 0
..
. . .

. . .
. ..

.

CAT�2 � � � C 0

2
66664

3
77775

wð0; kÞ
..
.

wðT � 1; kÞ

2
664

3
775þ

vð0; kÞ
..
.

vðT � 1; kÞ

2
664

3
775

Therefore, the preceding equations transformed a dynamic system
(1) into a static model, which is called a lifted system or a lifted model
[19]. The similarities between (21) and (12) is evident. ILC (4) can be
rewritten as

�UðkÞ ¼ �Uðk� 1Þ þ �KILC
�Eðk� 1Þ ð22Þ

where

�KILC¼̂diag K ILC; . . . ;K ILC|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
T

8<
:

9=
;; �Eðk� 1Þ¼̂

eð0; k� 1Þ
..
.

eðT � 1; k� 1Þ

2
664

3
775 ð23Þ

If there is a Q-filter (7), the following gain matrix should be added to
multiply Uðk� 1Þ in (22).

�Q¼̂

a0 a1 0 � � � 0 0
a1 a0 a1 � � � 0 0

0 a1 a0
. .

.
0 0

..

. ..
. . .

. . .
. . .

. ..
.

0 0 0 . .
.

a0 a1

0 0 0 � � � a1 a0

2
666666666664

3
777777777775

ð24Þ

Similarly, the L-filter (8) can be expressed as a gain matrix. There-
fore, a linear ILC can be transformed to a lifted form (22), which
can be considered R2R.
KRC
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Fig. 4. The simplest real-time updati
Through transforming RC to ILC and transforming ILC to R2R, a
uniform framework for ILC, RC, and R2R can be introduced as
follows,

UðkÞ ¼ Q Uðk� 1Þ þ FðYðk� 1Þ; yrÞ ð25Þ

where U denotes the inputs in R2R or input sequence in ILC and/or
RC; Fð�; �Þ is a linear or nonlinear function of previous information
and set-point. This united form reveals the essence of learning-type
control methods—learning from previous experience to improve the
new control signal. For convenience, the ‘‘batch” in batch processes,
‘‘period” in continuous processes, and ‘‘run” in run-based processes
are called ‘‘cycle” for uniformity.

3. Real-time information

The measurement information in the current cycle is denoted
real-time information. As shown in (25), real-time information is
not used in the learning-type control law. To improve the robust-
ness of learning-type control to non-repetitive variations in cycle
direction, real-time information should be integrated.

3.1. Real-time ILC

Usually, real-time information can be included in one of two
ways: either based on a real-time updating law or based on
‘‘plug-in type”.

For the first type, ILC is chosen as (6) and the updating law has
the following form,

rðt; kÞ ¼ rpðt; kÞ þ rcðt; kÞ ð26Þ

where rp(t, k) and rc(t, k) are terms based on the information in pre-
vious and current cycles, respectively. It has been discussed in Sec-
tion 2.1 how to design rp(t, k), as shown in (8). All these methods
can be used to design rc(t, k), except for the anticipatory-type.

The phrase ‘‘plug-in type” is borrowed from RC, as stated in Sec-
tion 3.2. The typical form of plug-in type ILC [20] is

uðt; kÞ ¼ uRTðt; kÞ þ uILCðt; kÞ ð27Þ

where uRT(t, k) is a normal real-time feedback controller, such as
PID, MPC; uILC(t, k) is a normal ILC.

3.2. Real-time RC

Similar to Section 3.1, all RCs with real-time information can
also be divided into two classes. The simplest real-time updating
law based RC is shown in Fig. 4. The transfer function of this con-
troller is

Uðz�1Þ ¼ KRC

1� z�T Eðz�1Þ ð28Þ

Plug-in type RC is another popular way for including real-time
information [21]. The general block diagram of plug-in type RC is
shown in Fig. 5. The main idea is that there are two channels from
tracking error to control input—one is a conventional RC, and an-
other is a real-time feedback control.
G(z-1)
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ng law based repetitive control.
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Fig. 5. Typical structure of a plug-in type repetitive control. F(z�1) denotes the transfer function of real-time feedback control.
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3.3. Real-time Information and R2R

In our opinion, real-time information cannot be used in R2R
control. There are two reasons. First, it is commonly assumed that
frequent measurements are not available for designing R2R;
otherwise, ILC or RC would be a better choice. Second, even if fre-
quent measurements are available, according to causality, the in-
puts should be determined before the measured outputs in
current cycle are available. This issue will be further discussed
in Section 5.

3.4. Fusion of ILC and RC

Whether the control method can accommodate real-time infor-
mation is one of the main distinctions between ILC/RC and R2R.
Next the essential distinctions between ILC and RC will be
examined.

From Sections 2.1, 2.2 and 2.4, it can be observed that there
are two main differences between ILC and RC. First, ILC and RC
are typically applied in batch processes and continuous processes,
respectively. Second, ILC and RC were developed in the time-do-
main and the frequency-domain, respectively. Considering the
first distinction, however, ILC has been successively applied to
continuous processes with periodic inputs [22]. This kind of ILC
is also called no-reset ILC [23]. The second distinction has been
mentioned implicitly in the literature, for example, in page
1163 of [5], it was stated that ‘‘most analysis and design of repet-
itive control are performed in the frequency-domain, which
makes the nonlinear study more difficult than ILC developed in
the state space”; in page 546 of [24], it was presented that ‘‘RC
is primarily a frequency-domain technique”. However, there is
no reported work stating this distinction explicitly, which is one
of the motivations for this paper.

Because ILC and RC were designed by using different tools, they
have different formulations, but their essential features are nearly
equivalent, and the only criteria to distinguish ILC and RC are time-
domain or frequency-domain formulation. In this section, ILC and
RC are considered to be the same algorithm, labeled ILC/RC.

Now the 2-dimensional (2D) model frequently used in design-
ing ILC will be introduced [25]. Define

DTnðt; kÞ¼̂nðt; kÞ � nðt � 1; kÞ;
DKnðt; kÞ¼̂nðt; kÞ � nðt; k� 1Þ; n ¼ x; u; y ð29Þ

Given QILC = 1 in (6), it is obtained that

DK uðt; kÞ ¼ rðt; kÞ ð30Þ

From (1) and (30), it can be found that

DK xðt þ 1; kÞ ¼ ADK xðt; kÞ þ Brðt; kÞ þ DK wðt; kÞ ð31Þ
From (1) and (3), it can be found that

eðt þ 1; kÞ ¼ eðt þ 1; k� 1Þ � CDK xðt þ 1; kÞ � DKvðt þ 1; kÞ

¼ eðt þ 1; k� 1Þ � CADK xðt; kÞ � CBrðt; kÞ

� CDK wðt; kÞ � DKvðt þ 1; kÞ ð32Þ

Combining (31) and (32), the following can be obtained,

DK xðt þ 1; kÞ
eðt þ 1; kÞ

" #
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A 0
�CA 0

� �
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or

DK xðt þ 1; kÞ
eðt þ 1; kÞ
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A 0
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� �
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þ
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� �
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þ
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� �
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0
�I

� �
DKvðt þ 1; kÞ ð34Þ

Models (33) and (34) are the 2D Fornasini–Marchesini model and the
2D Roesser model, respectively [26]. Based on these transformations,
designing ILC/RC for batch process (1) is equivalent to designing a
feedback control for a 2D system (33) or (34). As pointed out in
[27], the convergence properties of ILC can be studied in two direc-
tions: the time direction (t-direction) and the batch direction (k-
direction). Using the lifted model introduced in Section 2.4, only
the stability of the closed-loop system in k-direction can be studied,
so the controlled system is generally assumed to be open-loop sta-
ble. This assumption can be removed in the 2D model framework.
Hence, the 2D model framework provides more freedom than the
lifted model.

Based on the 2D model, the comparison of ILC, RC, and R2R is
given in Table 1. In row 2, repetitive processes include repetitive
batch processes, continuous processes with periodic exogenous in-
puts, and periodic continuous processes [28]. In row 3, dynamic
model include state space model and transfer function. The formu-
lations of these two models were introduced in Sections 2.1 and
2.2. These kinds of processes have good repetitive nature, such as
even cycle durations, while run-based processes have more flexi-
bility, for example, the duration might have huge variations from
cycle to cycle, as explained in Sections 5 and 8. In row 6, the control
structures under learning-type control laws are compared. Because
the real-time information is not used in R2R, the system under R2R
is open-loop in the t-direction.

There are two application modes to use the learning-type con-
trol. First, the learning-type control method is used to determine
the control signal directly, and this kind of learning-type control
is called direct learning-type control. Second, there is a local
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feedback controller in each cycle and the learning-type control is
used to update the parameter settings of the local controller, so
this kind is called indirect learning-type control. The methods that
can be used for designing direct learning-type control and indirect
learning-type control will be discussed in Section 4 and in Section
5, respectively.
4. Direct learning-type control

In principle, all feedback control methods can be used in plug-in
type ILC/RC, so plug-in type ILC/RC will not be included in this sec-
tion. There are a number of papers on higher-order ILC/RC [29,30],
but they are outside the scope of this paper.
4.1. Direct ILC

The procedure to design ILC can be divided into three steps:
choosing the updating law’s structure, designing the Q-filter, and
including some estimation schemes.

The structure of updating law is the key point of designing ILC.
PID-type [31,32] should be the most common structures of the
updating law. Because the stability analysis is convenient, optimal
control scheme [33] is often used to design the updating law. Due
to its superior abilities to deal with constraints, nonlinearities, and
multi-variants, model predictive control (MPC) has been used
widely to design the updating law [34–36]. From (42) in [35], it
is easy to find that MPC-based ILC is an anticipatory-type ILC. In
[37], convergence property of constrained MPC-based ILC was
investigated. In addition, some nonlinear algorithms, such as neu-
ral network [38] and fuzzy logic [39], have been used to design the
updating law. Dynamic output feedback control might be a prom-
ising candidate for ILC’s updating law [40]. In our opinion, ILC is
such a flexible framework that most existing feedback control
methods can be used to design the updating law.

There are mature methods for design of the Q-filter. In many
cases, it is chosen as Q = 1. Another common way is designing
the Q-filter as (7).

After the structure of ILC has been determined, there might ex-
ist some unknown terms, such as states and parameters, so some
schemes are needed to estimate these unknown terms. For in-
stance, the system states included in ILC can be estimated by Kal-
man filter [41] or state observers [42]; some design parameters of
ILC, such as the learning gain, can be searched by a recursive algo-
rithm [43]; some system parameters can be identified by an online
system identification scheme [44].

After the ILC design is completed, the stability of the closed-
loop system under ILC should be analyzed. The Lyapunov theorem
and its deductions [45] are basic methods for this problem. The
lifted model introduced in Section 2.4 and the 2D model intro-
duced in Section 3.4 are good frameworks for stability analysis of
ILC.
Fig. 6. Structure of indirect learning-type control. The narrow arrow line denotes
the measurement information; the wide arrow line denotes the management
decision.
4.2. Direct RC

When developed in the frequency-domain, all RCs are linear
control algorithms (this statement will be further discussed in Sec-
tion 6). Similarly to Section 4.1, three steps are taken to design an
RC: designing the L-filter, designing the Q-filter, including an esti-
mation scheme.

Designing the L-filter for RC is equivalent to designing a linear
updating law for ILC. PID-type methods should be the main
schemes for this issue.

The Q-filter design methods for RC are similar to that for ILC.
The L-filter and Q-filter were first proposed in RC field and then
transplanted to ILC field; therefore, the design procedures of these
filters are similar for ILC and RC.

Due to the limitations of frequency-domain framework, estima-
tion schemes are seldom used in RC. In general, the transfer func-
tion model is used for designing RC, so there is no system state to
estimate. In some special cases, schemes may be needed to esti-
mate other parameters. In [46], a recursive least-squares parame-
ter identification algorithm was used to update the L-filter of RC,
and the integrated control law had been experimentally applied
to pulse-width modulated inverter.

The small gain theorem [47] is a popular tool for analysis of the
stability of an RC [48]. After transforming the closed-loop system
to linear fractional transformation (LFT) form, l analysis and syn-
thesis method (structured singular value method) can be used to
analyze the stability [49].

4.3. Direct R2R

There are two ways to design R2R. In the first way, choosing the
control as (13), schemes are designed to estimate b or A. EWMA
introduced in Section 2.3 is the main method to update the estima-
tion of b. Predictor–corrector control (PCC) algorithm, introduced
on page 69 of [17], can be considered an expansion of the EWMA
that adds an explicit model for drift. In [50], a recursive least-
squares (RLS) algorithm was used to estimate b. In few cases, b is
fixed and A is estimated from cycle to cycle, as introduced in
[51]. It needs be pointed out that multiplicative parameters are
much more difficult to estimate than additive ones.

Another way to design R2R is by first choosing R2R as (17) and
then designing an updating law and forgetting factor. Due to the
simplicity of R2R, there is little freedom for updating law design.
P-type updating law is the main form [18,52].

The stability analysis for R2R is much easier than that for the
previous cases. Lyapunov’s direct method is the main method for
this issue [53].
5. Indirect learning-type control

In the case of indirect learning-type control, there are two loops
in the closed-loop system as shown in Fig. 6: the inner loop is the
local controller and while the outer loop is the learning-type con-
trol algorithm. In this case, the learning-type control acts as a
supervision or optimization module for the closed-loop system un-
der the local controller. In fact, R2R was originally proposed in this
form. In [16], an indirect R2R was proposed for plasma etching,
where the local controller was designed by using the algorithms
proposed in [54] and R2R was used to update the target values
for the in situ measurements. Generally, the indirect learning-type
control can be used to update the reference or set-point, control
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gain, working duration and other parameters. An indirect learning-
type control is made up of a common learning-type control and a
local controller. Section 4 focuses on how to design the common
learning-type control, and there exist many methods that can be
used to design the local controller. In principle, any real-time feed-
back control law can be chosen as the local control. The key point
for designing indirect learning-type control is to choose the appro-
priate variable related to the local control that could be optimized
by learning-type method. Therefore, the focus of this section is on
what kind of local control is used and what variables are updated.
0

5

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

Time (year)

Fig. 7. Publication numbers of literature with the titles ‘‘ILC”, ‘‘RC”, and ‘‘R2R” in the
Web of Science database in the last 10 years. ILC denotes iterative learning control;
RC denotes repetitive control; R2R denotes run-to-run control.
5.1. Indirect ILC

To combine adaptive control with ILC, many researchers prefer
to formulate the combination as an indirect ILC form [55,56]. The
indirect formulation was utilized in this case mainly for mathe-
matical convenience, and the supervision function of ILC is not evi-
dent. In 1995, Bone [57] used ILC to update the disturbance
estimation in the prediction model for GPC, and this combination
scheme had been applied to a PUMA-762 robot. In [58], a neural-
network-based controller was proposed for trajectory imitation
of robot manipulators and ILC was used to update the weight of
neural network. In [11,59], the local controls were designed by
using PID and the references for PID control were optimized by
ILC. The statistical results for the literature analysis in Section 6
will show that less than 10% of ILCs are of indirect form.
5.2. Indirect RC

In fact, as early as 1988, an indirect RC was proposed in [48]. A
two-degree-of-freedom control worked as the local control, and a
plug-in type RC was used to update the reference trajectory for
the local control. RC was also used to update the reference trajec-
tory for the local tracking controller in [60], and this algorithm was
applied to pulse-width-modulated inverter. In [61], the gain matri-
ces of a dynamic output feedback controller were scheduled by RC.
This algorithm has been verified in rotational velocity regulation in
a laser printer. As shown in Section 6, indirect RC comprises less
than 10% of all RC.
5.3. Indirect R2R

R2R is frequently used to schedule the working duration (how
long each run will last), e.g., for shallow trench isolation etch pro-
cesses [50] and chemical vapor deposition [62]. In most of these
papers, the local controller is not mentioned, because it is not
the emphasis or there is no local control. Even if no local control
is used, R2R for working duration is also considered to be indirect
due to the special property of time, and the local control is open-
loop in this case. Updating the set-point for the local control is an-
other common application of indirect R2R. In [63], R2R was used to
optimize the set-point for PID. Nonlinear real-time control and R2R
were combined to control etch depth and spatial uniformity in
Table 2
Publications of learning-type control from Web of Science and IEEE Xplore. ILC
denotes iterative learning control; RC denotes repetitive control; R2R denotes run-to-
run control; Full Text denotes Full Text & All Fields; Title for IEEE Xplore denotes
Document Title.

Web of Science IEEE Xplore

Topic Title Full Text Title

ILC 440 254 1641 400
RC 245 106 1345 188
R2R 79 32 283 36
reactive ion etching [64]. Fig. 3 in [65] shows a typical block dia-
gram of indirect R2R.

Most R2Rs are utilized in the indirect form, which is the essence
of R2R. In this situation, the real-time information can be used by
the local controller, but the information used to update R2R must
come from the previous cycle; therefore, the statement about
real-time information and R2R mentioned in Section 3.3 is still
correct.
6. Literature overview

All results presented in this section were found via literature
searches in the Web of Science1 and the IEEE Xplore2 databases
on August 8, 2008. Two searching fields, Title and Topic, were chosen
in Web of Science, while Document Title and Full Text & All Fields
were chosen in IEEE Xplore. The searching phrases were ‘‘iterative
learning control”, ‘‘repetitive control”, and ‘‘run-to-run control”,
respectively. Please note that the quotation mark was included to
make sure that unrelated papers were not involved. Because the ex-
act names were used in the literature search, it is possible that many
important learning-type control publications were missed; however,
the statistics in this section still can provide some essential facts.
Table 2 shows the numbers of publications about three searching
phrases in four different searching fields. The numbers of publica-
tions with title ‘‘ILC”, ‘‘RC” and ‘‘R2R” in Web of Science between
1998 and 2007 are shown in Fig. 7, and while the numbers of publi-
cations in IEEE Xplore from 1998 to 2007 are shown in Fig. 8. These
figures demonstrate that publication numbers of learning-type
control grew steadily in the recent 10 years.

There are so many publications that it is not efficient to system-
atically review all of them. Hence in this section the literature re-
view is restricted to SCI papers (from Web of Science) with exact
title ‘‘iterative learning control”, ‘‘repetitive control”, and ‘‘run-to-
run control”. Through the electronic journal database system in
the University of California Santa Barbara (UCSB), 207, 73, and 28
electronic papers have been found for ILC, RC, and R2R, respec-
tively. The first author reviewed all these papers to separate them
into direct or indirect learning-type control, simulation or experi-
ment, and different controlled processes. The categorizations given
in this section are based on the author’s subjective decision.

Among 207 articles on ILC, six of them are comments or replies
to comments; three of them are survey papers; one paper is book
1 http://apps.isiknowledge.com/WOS_GeneralSearch_input.do?product=WOS&
search_mode=GeneralSearch&SID=4CjPCbEj2mMm3@iJah4&preferencesSaved=.

2 http://ieeexplore.ieee.org/search/advsearch.jsp.

http://apps.isiknowledge.com/WOS_GeneralSearch_input.do?product=WOS&amp;search_mode=GeneralSearch&amp;SID=4CjPCbEj2mMm3@iJah4&amp;preferencesSaved=
http://apps.isiknowledge.com/WOS_GeneralSearch_input.do?product=WOS&amp;search_mode=GeneralSearch&amp;SID=4CjPCbEj2mMm3@iJah4&amp;preferencesSaved=
http://ieeexplore.ieee.org/search/advsearch.jsp


Table 4
Categorization of learning-type control based on application processes. ILC denotes
iterative learning control; RC denotes repetitive control; R2R denotes run-to-run
control.

ILC RC R2R

Robotics 21 1 0
Rotary system 8 7 0
Other mechanical system 18 13 1
Semiconductor process 4 0 12
Power system 1 8 0
Chemical process 3 0 0
Optical disk system 1 6 0
Biomedical system 0 0 1
Miscellaneous 9 5 0
Total 65 40 140
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Fig. 8. Publication numbers of literature with the titles ‘‘ILC”, ‘‘RC”, and ‘‘R2R” in the
IEEE Xplore database in the last 10 years. ILC denotes iterative learning control; RC
denotes repetitive control; R2R denotes run-to-run control

Table 3
Category of learning-type control: direct and/or indirect form. ILC denotes iterative
learning control; RC denotes repetitive control; R2R denotes run-to-run control.

Direct Indirect

ILC 177 16
RC 58 4
R2R 12 14
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chapter; one paper is an editorial letter; three papers are not about
ILC. Hence, only 193 publications are included in the following sta-
tistical results. Among 73 publications on RC, five articles are com-
ments or replies to comments; two of them are survey papers; four
papers are unrelated with RC. Therefore, 62 articles are studied.
Concerning R2R, two papers are not in the subject area, so only
26 publications are included in the statistic results.

The categorization of learning-type control into the direct or
indirect subcategories is presented in Table 3. In most cases, the
distinctions between direct and indirect learning-type controls
are clear. But in some cases, it is not easy to distinguish them.
For example, plug-in type ILC can be viewed in two different ways:
either as ILC combined with feedback control or as feedback con-
trol combined with feedforward control. In the first viewpoint,
the control is a direct ILC; while in the second viewpoint, ILC is
used to update the feedforward part of the local control, so it is
an indirect ILC. An important criterion is that if the control input
or part of the control input is determined by learning-type control
directly, then the control algorithm is considered to be in the direct
form.

Another puzzling case arises when there is a transformation be-
tween the learning-type control signal and the real control input.
The criterion for this case is whether the transformation is related
to measured output information. If the transformation is unrelated
to the outputs, it cannot be considered feedback control, so the
control algorithm is of the direct form, e.g. [66]. Otherwise, the
algorithm is of the indirect form. In some cases [18], the control in-
put was parameterized as U(t, vk) and R2R was used to design vec-
tor vk. Because U(t, vk) is unrelated to the output, this kind of R2R is
of the direct form. Therefore, not all direct learning-type controls
design the control input directly, and there might exist a static
transformation between learning-type control and actual input
signal.

If R2R is used to determine the working duration, then it is cat-
egorized as indirect R2R regardless of whether local control exists.
This is because time is a special physical variable whose profile
cannot be designed, so the working duration cannot be considered
the magnitude variable.

Among 193 ILC-related papers, 62 RC-related papers, and 26
R2R-related papers, 65, 40, and 14 of them, respectively, provide
experimental results; other papers present only simulation results
or even no validation results. The 65 ILC-related papers, 40 RC-re-
lated papers, and 14 R2R-related papers that present experimental
results were categorized based on their application processes. Bor-
rowing ideas from [67,68], the following categories were chosen:
‘‘robot”; ‘‘rotary system”, which includes motors and other rotating
machineries; ‘‘other mechanical system”, which covers non-ro-
botic/non-motor actuators, servo systems, mechanical valve and
so on; ‘‘semiconductor system”; ‘‘power system”; ‘‘chemical pro-
cess”; ‘‘biomedical system”; and ‘‘miscellaneous”. The statistic re-
sults on categorization of learning-type controls based on their
application processes are provided in Table 4.

Among 193 ILC-related papers, nine papers proposed ILC in the
frequency-domain. Strictly speaking, these algorithms should be
categorized as RC, but the original classifications were maintained.
Similarly, four of 62 RC-related papers presented controllers in the
time-domain, so these algorithms should be denoted ILC. Corre-
spondingly, so-called nonlinear RC could be proposed. In addition,
seven of ILC-related papers and six of RC-related papers designed
and analyzed control algorithms in both time and frequency-do-
mains. It is very difficult to distinguish between ILC and RC in these
situations.
7. Promising fields and outlook

As demonstrated in Figs. 7 and 8, learning-type control has been
receiving increasing attention from researchers and practicing
engineers. Based on the literature overview results in Section 6,
some promising fields could be revealed, which will be helpful
for theoretical studies.

From Table 3, most R2Rs act in the indirect form, but there are
few works on indirect ILC or RC. Compared to direct form, indirect
learning-type control has some advantages. First, the existing pro-
cess structure need not change; only an outer loop module is
added to update some parameters of the existing control. Second,
in some cases, indirect learning-type control [69] has better
robustness than the direct form [70]; this is because direct learn-
ing-type control must have a feedforward term, which is sensitive
to variations in cycle direction, but a feedforward term is not nec-
essary for the local controller of the indirect algorithm. In addition,
the idea of the indirect method is very advanced: stability and
robustness are not the only requirements for control design, and
an optimization scheme should be utilized to improve the perfor-
mance. In fact, indirect R2R has been successively applied in prac-
tice; however, the reported results on indirect ILC or RC are scarce.



Table 5
Extensions of different learning-type control methods. ILC denotes iterative learning
control; RC denotes repetitive control; R2R denotes run-to-run control; SISO denotes
single-input single-output; MIMO denotes multi-input multi-output.

Learning-type methods Problems being expert

Indirect learning-type
control

Local controller exists AND impossible or difficult
to change the existing structure

Direct R2R No frequent measurement OR bad repetitive nature

Direct RC Frequent
measurements and
good repetitive
nature

SISO linear systems

Direct ILC All systems particularly
for MIMO and nonlinear ones
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Due to the greater flexibility, indirect ILC/RC could achieve more
optimization tasks in many cases than indirect R2R; hence, it is a
promising direction in the future.

From Table 4, it is obvious that learning-type control has been
applied frequently in industrial processes; however, learning-type
control’s potential beyond industrial processes has not been ex-
plored, e.g., there is only one result on a biomedical system [52],
where run-to-run control was used to adjust prandial insulin dos-
ing for type 1 diabetes. Taking into consideration all of the papers
involved in Table 3, there are still two other papers [18,71] about
insulin infusion based on run-to-run control; however, there is
no article on ILC or RC for biomedical systems among the 193
ILC-related papers and 62 RC-related papers. Of course, due to
the small statistical sample, this does not mean that there is not
existing work on ILC or RC for biomedical systems—in fact, some
related work, such as [72], have been found—however, it illustrates
that the potential of implementing learning-type control to bio-
medical systems remains largely unfulfilled. Biomedical engineer-
ing is an exciting research field wherein control technologies can
play a great role [73]. Due to the diurnal cycle, the human body
and other organisms exhibit repetitive natures from day to day;
therefore, biomedical systems should be logical application areas
for learning-type control. Many studies indicate that the specialties
of learning-type control can be exploited in these fields, such as
glucose control, circadian rhythm regulation, and cell cycle control.
Recently, ILC was successively applied in glucose control [69,70].
The authors believe that learning-type control for biomedical sys-
tems will have dramatic progress in the near future.

Driven by manufacturing business, the last 10 years witnessed a
resurgent interest in batch processing technologies. Batch pro-
cesses are the preferred manufacturing choice for low-volume
and high-value products such as specialty chemicals, pharmaceuti-
cals, consumer products, and bio-products. In general, batch pro-
cesses have some degree of repetitive nature; hence, designing
learning-type control for batch processes is well motivated. ILC
has been successfully used to control batch processes for a long
time period. On the other hand, since the class of run-based pro-
cesses includes batch processes, it is logical to use R2R in batch
processes. The only issue remaining is RC for batch processes. In
our opinion, there are two difficulties that must be addressed:
(1) frequency-domain description for batch processes, and (2) stor-
ing the previous information. To the best knowledge of the authors,
there is no specialized formulation for batch processes in the fre-
quency-domain. Therefore, the authors suggest that a batch pro-
cess be considered as a continuous process, and design RC for the
continuous process. As shown in Fig. 2, a time-delay module can
be used to store the previous information; however, this is infeasi-
ble for batch processes, because the interval duration between two
batches is varying. Hence, a memory operator should be used to re-
place the time-delay module.

Due to their finite duration, most batch processes show nonlin-
ear behavior. In fact, most chemical processes exhibit nonlinearity.
Therefore, designing the learning-type control for nonlinear sys-
tems is a very interesting and important problem. If indirect learn-
ing-type control is implemented, any nonlinear control method
can be used to design the local controller for the nonlinear system.
This is a straightforward issue for learning-type control. Therefore,
only direct learning-type control is discussed in this regard. Due to
the limitations of the frequency-domain framework, a linear model
is required to design RC for a nonlinear system. Since only a static
model is used to design R2R, nonlinear issues are not considered
commonly in R2R-related papers. As pointed out in Section 3.3,
R2R is an open-loop method. Hence, if a R2R is designed for a non-
linear system, the nonlinear system should be open-loop stable.
Designing R2R based on nonlinear static models might be a prom-
ising direction [74].
ILC is a good framework to deal with system nonlinearity. In
general, there are several ways to design nonlinear ILC. First, the
updating law of ILC could be designed by using nonlinear control
methods, e.g. fuzzy logic [39], neural network [38], and sliding
mode control [75]. Second, the structure of the updating law is lin-
ear but with nonlinear gains [76,77]. Third, some nonlinear projec-
tions, e.g. deadzone [78] and saturation function [79], can be used
to improve the robustness of ILC. In addition, by designing different
control laws for odd and even batches, a special ILC scheme was
proposed in [80]. Although there exist isolated results for nonlinear
ILC, all of them were designed for a particular class of nonlinear
systems, so general strategies for nonlinear ILC is still an open
problem.

8. Guidelines for choosing learning-type control

This section will introduce some guidelines to aid engineers in
choosing appropriate learning-type controllers for different
problems.

If there are existing controllers in the considered processes and
it is impossible or difficult to change the existing process structure,
indirect learning-type control will be the first choice. As stated in
Section 6, there are few reported works on indirect methods, so di-
rect learning-type control will be a better choice for other cases.
Next, the strong points of direct ILC, RC, and R2R will be discussed
respectively.

If there is no frequent measurement available, R2R will be the
only choice. On the other hand, if the repetitive nature of the pro-
cess is not very good, R2R will work better than ILC/RC. For exam-
ple, if the cycle durations have significant variation, it is difficult to
design a good ILC or RC controller, because all existing work on ILC/
RC have an implied assumption that the cycle durations are the
same or at least similar. ILC/RC is better at controlling processes
with frequent measurements and reliable repetitive nature. As pre-
viously stated, ILC denotes time-domain-based ILC/RC and RC de-
notes frequency-domain-based ILC/RC in this section. Hence, in
order to make clear the differences between ILC and RC, the differ-
ences between time-domain and frequency-domain methods must
be delineated. It is clear that the time-domain method is the only
choice for nonlinear systems. It is widely accepted that for multi-
input multi-output (MIMO) systems, the time-domain method is
more convenient than the frequency-domain method. However,
the comparison between time-domain and frequency-domain
methods is debatable in the case of single-input single-output
(SISO) linear systems. In our opinion, one reason for the fre-
quency-domain method widely used in practice is that it displays
some advantages in working for SISO linear systems. Therefore,
RC is recommended for SISO linear systems in this paper, even
though it might be unfair for ILC.

These statements mentioned previously are summarized in
Table 5. The distinctions of indirect ILC, RC, and R2R are similar
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YesFrequent measurements
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Indirect learning -
type control
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Fig. 9. The flowchart for choosing appropriate learning-type methods.

Y. Wang et al. / Journal of Process Control 19 (2009) 1589–1600 1599
to that of direct ILC, RC and R2R. On the basis of these conclusions,
a guideline for choosing appropriate learning-type control meth-
ods for different problems is presented in Fig. 9.

9. Conclusions

In this paper, the control methods ILC, RC, and R2R were com-
pared systematically. The distinction between ILC/RC and R2R is
clear. The output of R2R is constant or at least its structure is con-
stant, while both the output of ILC/RC and its structure could be
varying. The distinctions between ILC and RC are less easily de-
fined. In our opinion, this is an issue left over from history: ILC
was originally proposed in time-domain, while RC was presented
in frequency-domain.

By transforming these methods into a uniform mathematical
formulation, the similarities and features of learning-type control
methods become much clearer. Essentially, ILC and RC are the
same—updating the control signal in both time and cycle directions
based on the historical data. Furthermore, designing controllers by
using both time-domain and frequency-domain methods becomes
more common, so it is difficult to distinct ILC and RC in some cases.
Hence, it is cautiously suggested that ILC and RC could be consid-
ered the same thing in the future.

According to the application mode, learning-type control was
divided into two classes—direct form and indirect form. Based on
the statistical results in Section 6, indirect learning-type control
is an open problem with a bright future. In order to explain the
main ideas as briefly as possible, some interesting, but atypical, is-
sues, such as higher-order, are not discussed in this paper.
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