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PREFACE

Power electronics fundamentals have been established within the framework of
continuous-time analysis, averaged modeling of switched-mode power converters,
and analog control theory [1–5]. Ever more often, control and management
functions around power converters are implemented digitally, expanding the field
of fundamentals to discrete-time modeling and digital control concepts specific to
power electronics. Standard textbooks and courses dedicated to digital control of
dynamic systems in general provide the necessary background but seldom, if ever,
address the specifics necessary to fully understand and successfully practice the
design of digitally controlled power converters. We attempt, in this book, to fill
the gap by treating the fundamental aspects of digital control of high-frequency
switched-mode power converters in a systematic and rigorous manner. Our
objectives are to put the reader in the position to understand, analyze, model, design,
and implement digital feedback loops around power converters, from system-level
transfer function formulations to coding practical designs in one of the mainstream
hardware description languages (HDLs) such as VHDL or Verilog.

The book is intended for graduate students of electrical engineering pursuing a
curriculum in power electronics and as a reference for engineers and researchers who
seek to expand on the expertise in design-oriented knowledge of digital control of
power electronics. It is assumed that the reader is well acquainted with foundations
of the power electronics discipline, along with associated continuous-time modeling
and control techniques [1–6]. Familiarity with sampled-data and discrete-time system
analysis topics is helpful but not absolutely essential. Key concepts are developed
from the beginning, including a brief review of the necessary discrete-time system
fundamentals in Appendix A. For a more comprehensive background, the reader is
referred to one of the standard textbooks, such as [7, 8].

The book is composed of eight chapters, structured as follows. The introductory
chapter provides an overview of digital control of high-frequency switched-mode
power converters, the motivation behind the surge of interest in the area, a summary
of analysis, modeling, control, and implementation issues, as well as a summary of
recent advances demonstrating potential advantages of digital controllers, including
system power management interfaces, programmability of control functions,
dynamic response and efficiency improvements, and practical autotuning techniques.

Chapter 1 provides a review of the continuous-time averaged modeling
approach for switched-mode power converters. Averaged small-signal modeling is
extensively covered by a number of authoritative textbooks [1–3], and the intention
is not to replicate this subject in its entirety. Rather, the purpose of Chapter 1
is to focus the reader’s attention on the methodology and assumptions behind
the averaging approach. Understanding of the philosophy and limitations of the

ix



x PREFACE

averaging technique is essential to appreciate the need for a different approach when
it comes to digitally controlled converters.

Chapter 2 introduces the main elements of a digitally controlled converter, with
the purpose of providing the reader with a quick overview of the main differences
between analog and digital control without immediately entering into detailed mod-
eling issues. This chapter ends with a discussion about the use of continuous-time
averaged modeling for designing digital loops, an approach often employed in prac-
tice but which can only account for sampling effects and digital control delays in an
approximate manner.

The discussion motivates the formulation of a discrete-time modeling approach,
developed in Chapter 3, which correctly treats the digitally controlled converter as a
sampled-data system and formulates its small-signal dynamics in the z-domain rather
than in the Laplace domain. In addition to providing the theoretical framework of
discrete-time modeling, a number of modeling examples are discussed in Chapter 3.
Furthermore, it is shown that a direct link can be established between continuous-time
modeling and discrete-time modeling for the converters that are topologically invari-
ant, such as the Buck converter. In such cases, a simple and straightforward discretiza-
tion rule can be formulated, which translates the converter averaged small-signal
model into the exact discrete-time model.

Chapter 4 is devoted to direct digital compensator design, based on the
discrete-time models developed in Chapter 3. Among many techniques discussed
in the literature, the emphasis is given here to the so-called bilinear transform
method. The main advantage of the approach is that the entire design procedure is
formulated in an equivalent continuous-time domain, in which both the digitally
controlled converter and the compensator under design assume the form of
continuous-time systems. As a result, the direct digital design can take advantage
of the familiar analog control design techniques with the design specifications
formulated in the frequency domain. Standard digital proportional-integral (PI)
and proportional-integral-derivative (PID) compensator designs are addressed in a
number of examples, including voltage-mode, current-mode, and multiloop control
of dc–dc converters and power factor correction (PFC) rectifiers.

Amplitude quantization effects introduced by analog-to-digital (A/D) convert-
ers and digital pulse width modulators (DPWMs) are discussed in Chapter 5. This
chapter first clarifies how limit cycle oscillations can arise in a digitally controlled
dc–dc converter in relation to the existence of a dc operating point for the closed-loop
system. Secondly, basic design guidelines—referred to as no-limit-cycling condi-
tions—are presented, which aim at preventing such generally undesired phenomena
to occur. This chapter ends with a brief overview of DPWM and A/D architectures
and associated implementation trade-offs.

The issue of compensator implementation is covered in Chapter 6. Scaling and
quantization of compensator coefficients are treated first, with the goal of quantifying
the quantization-induced errors on the loop gain magnitude and phase at the desired
crossover frequency. Secondly, this chapter addresses implementation of the control
law in a fixed-point arithmetic environment, providing a methodology for word length
determination of the various signals inside the control structure. Given the focus of the
book on high-frequency switched-mode power converter applications, the emphasis
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is on hardwired implementations of the control law, together with VHDL and Verilog
coding examples. Nevertheless, the principles that apply to software-based, micropro-
grammed realizations are highlighted as well.

Autotuning is an advanced application of digital control, which brings up
intriguing potentials and additional challenges. Because of the importance of this
emerging topic, Chapter 7 is devoted to an overview of digital autotuning techniques
for high-frequency switched-mode power converters. After a brief discussion about
digital autotuning basics, two autotuning techniques are presented in more detail: an
injection-based approach and a relay-based approach.

An objective in writing the book has been to emphasize the distinction
between the fundamental, theoretical aspects of digital control design on one side
and the application of these techniques on the other, demystifying the perception
about discrete-time models or digital control as being exceedingly complex and
difficult to employ in practice. In line with such philosophy, Matlab® script examples
are systematically developed alongside the theory. A few Matlab® commands
allow, in most situations, to straightforwardly carry out system-level compensator
designs and rapidly proceed to HDL coding and implementation steps. Furthermore,
throughout the book, a number of design examples are fully worked out and verified
by simulations in the Matlab® environment.





INTRODUCTION

Efficient processing and control of electric power is required in applications ranging
from submilliwatt on-chip power management to hundreds of kilowatt and megawatt
power levels in motor drives and utility applications. The objectives of high efficiency,
as well as static and dynamic control of inputs or outputs under a range of operating
conditions, are accomplished using power electronics, that is, switched-mode power
converters consisting of passive (capacitive and inductive) components, and power
semiconductor devices operated as switches. In high-power applications, control and
monitoring tasks are often more complex, while the power semiconductor devices
are operated at relatively low switching frequencies, for example, up to tens of kilo-
hertz. The controller cost and power consumption are relatively low compared to the
overall system cost and power rating. In these applications, digital control offers clear
technical and economic advantages in addressing complex control, management, and
monitoring tasks. As a result, for many years now, digital control methods and digi-
tal controllers based on general-purpose or dedicated microprocessors, digital signal
processor (DSPs), or programmable logic devices have been widely adopted in power
electronics applications at relatively high power levels.

In ubiquitous low-to-medium power switched-mode power supply (SMPS)
applications, including point-of-load (POL) regulators, nonisolated and isolated
dc–dc converters, single-phase power factor correction (PFC) rectifiers, single-phase
inverters, and lighting applications, adoption of digital power management and
digital control has been slower. In these applications, switching frequencies are
often in the range from hundreds of kilohertz to multiple megahertz, and much
faster dynamic responses are required. The controller cost and the controller power
consumption can easily present significant portions of the system cost and power
dissipation. Furthermore, in many applications, control challenges have been
successfully met by continuous advances of readily available analog controllers,
using well-established analog analysis, modeling, and design techniques [1–5].
Nevertheless, practical digital control of high-frequency switched-mode power
converters has moved from proof-of-concept demonstrations to digital pulse
width modulation (DPWM) controller chips commercially available from multiple
vendors, with growing adoption rates in many applications. Several factors have

Digital Control of High-Frequency Switched-Mode Power Converters, First Edition.
Luca Corradini, Dragan Maksimović, Paolo Mattavelli, and Regan Zane.
© 2015 The Institute of Electrical and Electronics Engineers, Inc. Published 2015 by John Wiley & Sons, Inc.
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2 INTRODUCTION

contributed to the increasing penetration of the concept of “digital power” in
high-frequency power electronics applications:

• Ongoing advances in digital integrated-circuit processes have continued to
increase processing capabilities while bringing the cost down.

• The needs for improved system integration and increasingly complex power
management and monitoring functions have translated into the needs for digital
interfaces and programmability in switched-mode power conversion applica-
tions [9–11].

• Practical high-performance digital control techniques have been introduced and
demonstrated, together with innovative approaches offering performance gains
or entirely new capabilities that would be difficult or impractical to realize using
traditional analog techniques [12–14].

The “digital power” concept encompasses several aspects:

1. Digital power management, which refers to system-level control and moni-
toring of power conversion and distribution, usually over a serial communica-
tion bus [9–11]. Power management functions include turning on and off or
sequencing system power rails, adjusting setpoints for converter control loops,
programming control loop parameters, monitoring and reporting of measured
status or variables, and so on [15, 16]. These functions are typically performed
at timescales that are relatively long compared to a switching period.

2. Digital control, which includes time-domain and frequency-domain converter
modeling and control techniques, with control actions performed at timescales
comparable to a switching period.

3. Digital implementation techniques, which can be classified into two main
groups:

◦ Software-based controllers, where control algorithms are designed and
implemented in code executed on general-purpose or specialized microcon-
trollers or DSP chips. An early example of application of microprogrammed
digital control to power factor preregulators is presented in [17].

◦ Hardware-based controllers, based on custom-integrated circuits or pro-
grammable logic devices such as field-programmable gate arrays (FPGAs)
[18, 19]. Early examples of such hardware-based digital controllers can be
found in [20–22].

This book is focused on the fundamental aspects of analysis, modeling, and design
of digital control loops around high-frequency switched-mode power converters in
a systematic and rigorous manner. The objectives are to enable the reader to under-
stand, analyze, model, design, and implement digital feedback loops around power
converters, from system-level transfer function formulations to practical implementa-
tion details. The purpose of this chapter is to introduce the topics covered in the book
and to motivate the reader to pursue the theoretical and practical concepts covered
in the remaining chapters of this book. Furthermore, this introductory chapter points
to some of the more advanced digital techniques reported in the literature, including
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approaches to dynamic response improvements, system identification, autotuning of
digital control loops, and on-line efficiency optimization.

DIGITALLY CONTROLLED SWITCHED-MODE
CONVERTERS

A number of DPWM controller architectures and implementation strategies
have been investigated and realized in practice. Many standard microcontrollers
and DSP chips are now available, featuring multiple high-resolution PWM and
analog-to-digital (A/D) channels, which allow software-based implementation
of control and management functions. While advances in this area have been
rapid, the software-based approaches are still better suited for applications where
switching converters operate at relatively low switching frequencies. On the other
hand, at switching frequencies in the hundreds of kilohertz to megahertz range,
specialized hardware-based control loops are often preferred. This approach is
illustrated in the architecture shown in Fig. 1 [12, 13]. The control loop is digital,
using specialized, programmable A/D, DPWM, and compensator blocks to achieve
high-performance closed-loop dynamic responses, while programmability, power
management, and system interface functions are delegated to a microcontroller
core. Similar combinations of programmable hardware peripherals specialized
for switched-mode power converter applications, with software-based realizations
of higher-level management and communication functions are often found in
commercially available DPWM controllers.

Controllers of the type shown in Fig. 1 can be developed, realized, and tested
using standard digital VLSI design flow starting from logic functions described using

Po

Programmable
modulator

Small, fast
A/D converters

Power
semiconductors

Standard microcontroller core

System interface

Pin

Fast,
programmable
compensator

Gate
drivers

Figure 1 Digital controller architecture for high-frequency switched-mode power
converters [13].



4 INTRODUCTION

hardware description language (VHDL or Verilog), followed by prototyping and
experimental verifications using FPGA development platforms, ultimately targeting
relatively small, relatively low-gate-count integrated circuits capable of matching
or surpassing the state-of-the-art analog solutions in terms of dynamic performance,
power consumption, and cost. At the same time, digital PWM controllers offer digital
system interface, programmability and flexibility, power management functions,
reductions in the number of passive components, reduced sensitivity to process and
temperature variations, and potentials for practical realizations of more advanced
features.

Figure 2 shows a more detailed block diagram of a hardware-based digital
controller around a POL synchronous Buck converter. Output voltage vo(t) is
sampled by an A/D converter and compared to a setpoint reference Vref to produce
a digital voltage error signal e[k]. The error signal is processed by a discrete-time
digital proportional-integral-derivative (PID) compensator to generate a duty cycle
command ux[k]. In the basic version of the controller, the compensator gains Kp, Ki,
and Kd are found by design to meet control loop specifications, such as the crossover
frequency and phase margin, as detailed in Chapters 1–6 of this book. Once a
compensator is designed, the gains can be realized using digital multipliers, as shown
in Fig. 2. As only a few bits are sufficient to represent the error signal e[k], the entire
compensator can also be implemented as a lookup table [21–24]. In a more advanced
case, as illustrated by the digital autotuner block in Fig. 2, the compensator gains can

Vref

vo(t)Vg

c(t) c (t)

+−

+

−

L

C

uy[k] e[k]

Load

+

ux[k]

Digital
autotuner

ud[k]

up[k]

ui[k]

Ki

Kp

Kd

+ ×

×

×

z−1

z−1

+−

+

vo(t)Digital PWM

upert [k]

Hardwired
digital
compensator

fc

ϕm

Integrated digital controller

A/D

Figure 2 Digitally controlled point-of-load (POL) synchronous Buck dc–dc converter
example. Analysis, modeling, design, and implementation of digital control loops are
addressed in Chapters 1–6. An additional injection-based autotuning block is shown, which is
further discussed in Chapter 7.
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be tuned in response to the actual system dynamics to meet the desired specifications.
Autotuning is addressed in Chapter 7. Finally, a DPWM block generates the com-
plementary gate-drive control signals c(t) and c′(t) with duty cycle set by the digital
command and with appropriate dead times. Together with various enhancements,
such a controller can be realized in about 10,000 equivalent logic gates, which
translates to about one-third of a square millimeter in a standard 0.35 μm CMOS
process. Furthermore, higher-density CMOS processes with high-voltage extensions
suitable for power electronics applications are now readily available, making power
and cost-effective digital controllers for high-frequency switched-mode power
converters a reality. Examples of integrated digital controllers can be found in
[21, 22, 24–33].

It is of interest to examine a practical example. Following the block diagram
shown in Fig. 2 (without the digital autotuner), a digitally controlled 5 to 1.6 V
synchronous Buck converter prototype is described in [34]. The filter component
values are L = 1.1 μH, C = 250 μF, and the switching frequency is 500 kHz. The
A/D converter is a windowed converter [26], using threshold inverter quantization
approach [35]. The A/D conversion range is approximately 200 mV, centered
around the reference Vref = 1.6 V, for an equivalent output voltage quantization
step of 3 mV. A hybrid counter/ring oscillator DPWM is employed, with a time
quantization of about 390 ps, that is, with 0.02% duty cycle resolution. A digital PID
compensator designed for fc ≈ fs/10 = 100 kHz crossover frequency is VHDL
coded and implemented on an FPGA. Figure 3 illustrates an experimental 0 to 8 A
load step response, with the voltage deviation and the response time comparable to
responses expected from high-performance analog PWM controllers.

Analysis, Modeling, and Control Techniques

Referring to the example in Fig. 2, one may observe that the basic digital control
loop is conceptually similar to the standard voltage-mode analog PWM control

Figure 3 Experimental 0 to 8
A load step response in a
digitally controlled POL Buck
converter with conventional
PID compensation [34] (vo,
50 mV/div; iL, 5 A/div; and
timescale, 5 μs/div). © 2009
IEEE.



6 INTRODUCTION

loop, with analog control techniques based on averaged converter models briefly
reviewed in Chapter 1. As discussed further in Chapter 2, digital control differs from
analog control in two key aspects: time quantization and amplitude quantization.
Time quantization refers to the fact that the controller is a discrete-time system
that processes sampled versions of sensed analog signals to be regulated and
produces a discrete-time control output. In order to design high-performance control
loops, it is necessary to understand and consider the resulting delays and aliasing
effects. As discussed in Chapters 2 and 3, the use of continuous-time averaged
modeling for designing digital loops, an approach often employed in practice, can
only account for sampling effects and digital control delays in an approximate
manner. A more rigorous approach is based on discrete-time modeling [36], which
is described in detail in Chapter 3. This modeling approach enables direct-digital
design of compensator transfer functions, which is presented in Chapter 4. The
design specifications are presented in frequency domain, in terms of the quantities
familiar to the analog designer: the loop-gain crossover frequency fc and the phase
margin ϕm.

Implementation Techniques

In digitally controlled converters, regulation precision and accuracy are determined
by the resolutions of A/D and DPWM blocks, which introduce amplitude quantiza-
tion effects discussed in Chapter 5. These nonlinear effects can lead to steady-state
disturbances commonly referred to as limit cycling [37, 38]. Design guidelines to
avoid limit cycling are also presented in Chapter 5, together with a brief summary of
high-resolution DPWM and A/D implementation techniques.

Digital compensator implementation is addressed in Chapter 6. Scaling
and quantization of compensator coefficients are treated first, with the goal of
quantifying the errors introduced by coefficient quantization on the loop gain
magnitude and phase at the desired crossover frequency. Chapter 6 then addresses
PID compensator structures, such as the parallel PID realization shown in Fig. 2,
and the implementation of the control law in a fixed-point arithmetic environment,
providing a methodology for word length determination of the various signals inside
the control structure. Given the focus of the book on high-frequency switched-mode
power converter applications, the emphasis is on hardwired implementations of
the control law, together with VHDL and Verilog coding examples, while the
principles that apply to software-based, microprogrammed realizations are also
highlighted.

The objectives of Chapters 1–6 are to enable the reader to successfully ana-
lyze, model, design, and implement voltage, current, or multiloop digital feedback
loops around switched-mode power converters. Alongside, based on the theoretical
concepts, Matlab® scripts are systematically developed, which allow one to rapidly
perform discrete-time modeling and system-level compensator design steps, and pro-
ceed to implementation steps. Practical examples are used throughout the book to
illustrate applications of the techniques developed.
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SYSTEM AND PERFORMANCE GAINS VIA DIGITAL
CONTROL

Increased flexibility, programmability, and integration of system interface and power
management functions have been recognized as important advantages of digital
controllers. Furthermore, as digital controller implementation opened opportunities
for practical implementations of more sophisticated control approaches, considerable
advances have been made in various directions. This section highlights some of
the gains enabled by digital control in the areas of improved dynamic responses,
integration of frequency-response measurements, autotuning of digital control loops,
and on-line efficiency optimization.

Improved Dynamic Responses

Standard analog or digital converter controller design techniques are based on linear
small-signal models and frequency-domain-based compensator designs. It has been
recognized that considering the switching nature of the power stage directly, and oper-
ating with large-signal instantaneous state variables to provide on–off control actions
accordingly, can result in improved dynamic responses. The switching surface con-
trol [39] and many other time-domain based approaches have been investigated both
in analog and in digital domains. Digital implementation is particularly well suited
for explorations of control techniques targeting improved dynamic responses. A case
of special interest is a sequence of switching actions that result in minimum time,
that is, time-optimal response to an external disturbance such as a step load transient.
For example, for a Buck converter, a time-optimal response to a step load transient
consists of a single precisely timed on/off sequence. Various digital control methods
have been proposed to implement the time-optimal control [34, 35, 40–60].

These controllers have demonstrated step load transient responses that
approach limits imposed by the converter passive LC filter components. For example,
Fig. 4 illustrates the step load transient response of the parameter-independent
time-optimal controller described in [34], for the same synchronous Buck
prototype as in Fig. 3. The single switching action occurring immediately after
the step load is visible, which quickly restores the output voltage to regulation.
Compared to the response with the standard PID compensator in Fig. 3, both the
voltage deviation and the response time are significantly reduced. As the control
action is effectively saturated during time-optimal control events, overshoots may
occur in converter internal states such as the inductor current. An extension of
digital time-optimal control, including practical inductor current limitations, has
been addressed in [57].

A number of other approaches to achieve improved dynamic responses have
been explored. Multisampling techniques (where converter waveforms are sampled
more than once per switching period [61–63]), asynchronous sampling techniques
[35, 64, 65], and mixed-signal control techniques [66, 67] have been proposed to
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Figure 4 Experimental
0 A-8 A step load response
in a digitally controlled POL
Buck converter with the
time-optimal controller
described in [34] (vo:
50 mV/div, iL: 5 A/div,
timescale: 5 μs/div). © 2009
IEEE.

minimize the control loop delays. Multisampling techniques for constant on-time
controllers can also be found in [68–70]. Furthermore, it has been shown that non-
linear techniques can lead to dynamic performance improvements in dc–dc [71, 72]
and PFC applications [73]. Possibilities for improved dynamic responses in multi-
phase architectures have been investigated in [74, 75]. More complex controllers in
conjunction with power stage modifications present another interesting direction in
dynamic responses improvements. For example, it has been shown how digitally con-
trolled power stages with additional auxiliary switches can offer significant dynamic
response improvements [76], while [77] takes this approach a step further and pro-
poses a much tighter load-controller interaction.

Integration of Frequency-Response Measurements

An important experimental verification step in traditional frequency-response-based
controller designs includes measuring controller small-signal frequency responses
using network analyzers [1, 78]. Feasibility of integrating such nonparametric
frequency-domain system identification (system-ID) functionality into digital
controllers has been demonstrated in [79, 80]. To briefly summarize the technique,
Fig. 5 shows a block diagram of a digitally controlled converter with additional
system-ID functions. The identification process consists of perturbing the duty
cycle command with a pseudo-random binary sequence (PRBS), cross-correlating
the perturbation with the measured output responses to obtain the system impulse
response, and performing fast Fourier transform (FFT) to obtain frequency responses.
Cross-correlation can be implemented efficiently using the fast Walsh–Hadamard
transform (FWHT). Note that the approach reuses the DPWM and the A/D block
already present in the digital control loop. To mitigate the effects of switching
and quantization noise, the system-ID approach includes a sweep to optimize
the perturbation magnitude, pre-emphasis and de-emphasis filters applied to the
injected and the sensed signals, respectively, as well as smoothing in the frequency
domain. This approach has been applied to a number of converter examples in [80],
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Figure 5 Digitally controlled PWM converter with integrated frequency response
measurement capabilities [80]. © 2008 IEEE.

including a 15- to 30-V Boost dc–dc converter operating at fs = 195 kHz. Figure 6
shows time-domain waveforms during the identification process, while Fig. 7 shows
the identified frequency responses, which closely match discrete-time modeling
predictions.

The resulting on-line identified frequency response can be used for design,
diagnostic, or tuning purposes [81]. The success of these applications depends
on the fidelity of the identified frequency responses and the degree to which the
process is automated, as well as the costs, in terms of gate count or complexity,
time duration of identification, and effects on output voltage, incurred to obtain the
results. Reference [80] demonstrates the feasibility of incorporating fully automated
frequency response measurement capabilities in digital PWM controllers at relatively
low additional cost. The identification process can be typically accomplished in
several hundred milliseconds, and the output voltage can be kept within narrow
bounds during the entire process.

Autotuning

Taking advantage of the digital controller programmability, the overall objective of
autotuning is to automatically tune the controller parameters in response to the actual
system dynamics. An autotuning digital controller ideally becomes a “plug and
play” unit capable of identifying the key characteristics of the power converter and
the load and adjusting the controller parameters to achieve specified performance
goals. This capability represents a significant departure from the conventional design
flow.
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500 mV

20 ms

PRBS injection
with pre-emphasis

PRBS mag. sweep

PRBS injection
without pre-emphasis

Figure 6 Output voltage during system identification process in a 15- to 30-V Boost dc–dc
converter operating at fs = 195 kHz [80]. © 2008 IEEE.
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Figure 7 Control-to-output magnitude and phase responses determined by the system
identification process illustrated in Figs. 5 and 6 [80]. © 2008 IEEE.

Numerous advances have been made in the area of practical autotuning digital
control algorithms and implementation techniques [81–101], and the area is subject
to ongoing research and development efforts. Chapter 7 presents an overview of dig-
ital autotuning techniques for high-frequency switched-mode power converters. Two
autotuning techniques are presented in more detail: an injection-based approach and
a relay-based approach.
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The controller block diagram in Fig. 2 shows how a digital autotuner
can be incorporated into the digital controller based on the injection approach
[92, 93, 95, 97]. The autotuning system injects a digital perturbation signal upert [k]
into the feedback loop, superimposed to the PID compensator output uy[k].
The overall control command ux[k] = uy[k] + upert [k] modulates the converter.
Simultaneously, signals uy[k] and ux[k] before and after the injection point are
monitored and the tuning process adjusts the compensator gains until the correct
amplitude and phase relationships are established between the ac components of
ux[k] and uy[k] at the injection frequency, indicating that the loop gain meets the
specifications given in terms of the desired crossover frequency fc and phase margin
ϕm. The hardware requirements for the entire adaptive tuning system are relatively
modest, making it a practical solution.

Efficiency Optimization

Power conversion efficiency is a key performance metric in most applications. In
the efficiency improvements area, potential advantages of digital controllers include
abilities to precisely adjust switching frequency or other timing parameters of switch
control waveforms [27, 102–107], abilities to reconfigure the power stage on-line
either through power-switch segmentation [108, 109] or other gate-drive parameters
[109, 110], phase shedding [58, 111], or control of current distribution in multiphase
architectures [111–113], as well as abilities to implement algorithmic or prepro-
grammed approaches to on-line efficiency optimization [102, 103, 114–117].

The shift from traditional analog techniques to digital control in high-frequency
power electronics is making an impact on standard design practices, as well as in
various applications. Programmability, monitoring, digital system interfaces, and
system-level power management are becoming ubiquitous in power systems ranging
from mobile electronics to desktop computing, data centers, and communication
infrastructure. In these systems, digital control further brings opportunities for
improved dynamic responses and correspondingly reduced size of passive filters,
together with new approaches to converter-level and system-level efficiency
optimizations. In response to increasing energy cost and environmental concerns,
various energy efficiency initiatives and programs are addressing power conversion
efficiency and power quality in data centers and computer power supplies. It is
expected that future energy efficiency program specifications will be even more
demanding in terms of efficiency, power factor, and harmonic distortion requirements
for off-line power supplies over even wider load ranges. Further significant impact
can also be expected in renewable energy applications. For example, distributed
module integrated converters or micro-inverters in photovoltaic power systems can
take advantage of digital control algorithms for improved maximum power point
tracking, fault detection, and efficiency optimization. Similar impact can be foreseen
in electric-drive vehicles, not just in inverter controls where digital control is already
ubiquitous, but also in battery management and battery charger systems.





C H A P T E R 1
CONTINUOUS-TIME AVERAGED
MODELING OF DC–DC
CONVERTERS

Converter systems rely on feedback loops to achieve the desired regulation
performance. For example, in a typical dc–dc converter application, the objective is
to maintain tight regulation of the output voltage in the presence of input voltage
or load current variations. An accurate small-signal description of the converter
control-to-output dynamics is the starting point for feedback loop design techniques
based on frequency-domain concepts of loop gain, crossover frequency, phase
margin, and gain margin.

The most successful and widespread modeling technique for switched-mode
converters is based on averaged small-signal modeling [1, 118–120]. This technique
is based on first averaging the converter behavior over a switching period with the
purpose of smoothing the discontinuous, time-varying nature of the converter into a
continuous, time-invariant nonlinear system model. A successive linearization step
yields a linear, time-invariant model that can be treated using standard tools of linear
system theory. The converter is described by a continuous-time linear system, often
presented in the form of a linear equivalent circuit model, a natural representation in
the context of analog control design.

The averaging approach is currently the most widely accepted way of under-
standing dynamics of switched-mode power converters. In addition to the relative
simplicity and straightforwardness, popularity of the averaging approach has been
reinforced by the success of innumerable practical designs supported by robust and
easy-to-use integrated circuits for analog converter control.

The main purpose of this chapter is to revisit the main aspects of analysis and
modeling techniques for switched-mode power converters. Averaged small-signal
modeling, in particular, is reviewed in detail, highlighting the main assumptions
behind the approach. This prepares the background necessary to understand the
limitations of the averaged small-signal modeling in the context of digital control
design and to allow subsequent developments of discrete-time models where these
limitations are removed.

Digital Control of High-Frequency Switched-Mode Power Converters, First Edition.
Luca Corradini, Dragan Maksimović, Paolo Mattavelli, and Regan Zane.
© 2015 The Institute of Electrical and Electronics Engineers, Inc. Published 2015 by John Wiley & Sons, Inc.
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A brief review of pulse width modulated (PWM) dc–dc converters is pre-
sented in Section 1.1, followed by a summary of steady-state analysis and modeling
techniques in Section 1.2. Section 1.3 explains the need for dynamic modeling in
the design of control loops around switched-mode power converters and introduces
the small-signal averaged modeling approach. The method of state-space averaging
[119, 120], a general approach to modeling switched-mode power converters, is sum-
marized in Section 1.4. Analog control design examples are presented in Section 1.5.
In the subsequent chapters, these examples are revisited to illustrate modeling and
digital control design principles. To complete the background necessary to engage
in developments of analysis, modeling and control techniques in the context of digi-
tally controlled PWM converters, a discussion related to the nature of duty cycle, the
control variable in PWM converters, is presented in Section 1.6. The key points are
summarized in Section 1.7.

1.1 PULSE WIDTH MODULATED CONVERTERS

The focus of this book is on PWM converters, which are operated so as to alternate
between two or more distinct subtopologies in a periodic fashion, with a fundamental
switching period Ts. The Boost converter depicted in Fig. 1.1, for instance, operates
with the switch in position 1 for a fraction DTs of the switching period and with
the switch in position 0 for the remaining fraction D′Ts � (1 − D)Ts. The quantity
0 ≤ D ≤ 1 is the duty cycle, which determines the fraction of a switching period the
switch is kept in position 1. In PWM converters, D is the control input for the system,
which is adjusted by a controller in order to regulate a converter voltage or current.

Typical waveforms of a PWM converter are shown in Fig. 1.2, which exem-
plifies the gate driving signal c(t) and one of the converter state variables, such
as the output voltage vo(t). Assuming that the converter duty cycle is sinusoidally
modulated at a frequency fm � fs, the output voltage consists of a low-frequency
component vo(t), plus a high-frequency switching ripple. The low-frequency com-
ponent of vo(t) contains a dc term Vo and a spectral component at the modulation
frequency fm. Using the terminology of modulation theory, vo(t) is the baseband
component of vo(t). The high-frequency content, on the other hand, contains the
switching frequency fs and its harmonics, as well as all the modulation sidebands

Vg

Ro

L

C

1

0

1

0

DTs (1 − D)Ts

c(t)
iL(t)

+−

+

−

vo(t)

Figure 1.1 Pulse width modulated Boost converter.
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Figure 1.2 (a) Converter waveforms with duty cycle modulation and (b) qualitative
spectrum of a pulse width modulated signal.

originating from nonlinear interactions between fm and fs components occurring as
a result of the modulation process.

In the context of the averaged modeling approach, the separation between
low-frequency and high-frequency portions of the converter signals is of central
importance. To be more precise, the moving average operator 〈 . 〉T is introduced,

〈x(t)〉T � 1
T

∫ t+T/2

t−T/2
x(τ) dτ , (1.1)

which averages signal x(t) over a period T . With this definition, the low-frequency
component vo(t) of vo(t) illustrated in Fig. 1.2 is defined as its moving average over
the switching period Ts,

vo(t) � 〈vo(t)〉Ts
. (1.2)

The fundamental simplification at the basis of the averaging method consists
of describing the small-signal dynamics of vo(t) rather than vo(t), therefore neglect-
ing high-frequency components of the converter waveforms. Both the power and the
limitations of the method reside in the averaging approximation.
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1.2 CONVERTERS IN STEADY STATE

When a converter is operating in steady state, every converter state variable—and
therefore every voltage and current—is periodic in time, with a period equal to
the converter switching period Ts. Steady-state operation is reached when all the
converter inputs are constant—including the duty cycle—and after all transients are
extinguished. In the following text, the basic ideas behind steady-state analysis of
PWM converters are summarized. More extensive and detailed treatments can be
found in power electronics textbooks [1–5].

Steady-state analysis of switched-mode power converters consists of express-
ing the dc values of all the voltages and currents in terms of the converter inputs.
The analysis is founded on two basic principles, which are direct consequences of
the periodicity of the system waveforms:

• Inductor volt-second balance. As all the inductor currents are periodic, no net
flux variation can occur in any inductor over a switching period,

L(iL(Ts) − iL(0)) =
∫ Ts

0
vL(τ) dτ = 0. (1.3)

This is equivalent to stating that the average inductor voltage over a switching
interval is zero,

vL(t) = 0 . (1.4)

• Capacitor charge (ampere-second) balance. By a dual argument, as all the
capacitor voltages are periodic, no net charge can be absorbed or delivered by
any capacitor over a switching period,

C(vC(Ts) − vC(0)) =
∫ Ts

0
iC(τ) dτ = 0. (1.5)

This is equivalent to stating that the average capacitor current over a switching
interval is zero,

iC(t) = 0 . (1.6)

The two above-mentioned conditions, combined with conventional circuit anal-
ysis, are sufficient to solve the steady-state problem. In practice, the calculations are
greatly simplified by introducing the small-ripple approximation. By switching rip-
ple, one refers to the ac component of a converter voltage or current. In steady state,
the switching ripple is a periodic function with a fundamental frequency equal to the
converter switching rate. The ripple peak-to-peak amplitudes of a capacitor voltage
vC(t) and an inductor current iL(t) are denoted as ΔvC and ΔiL, respectively.

The small-ripple approximation states that the dc converter quantities can be
approximately determined by neglecting both capacitors voltage ripples and inductors
current ripples. This corresponds to considering every capacitor C as an ideal dc
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voltage source of unknown magnitude VC and every inductor as a dc current source
of unknown magnitude IL,

ΔvC

vC

� 1 ⇔ vC(t) = VC = constant ,

ΔiL
iL

� 1 ⇔ iL(t) = IL = constant .

(1.7)

Contrary to the volt-second balance and the ampere-second balance, which fol-
low directly from the characteristics of inductive and capacitive components and the
periodicity of the steady-state operation, the small-ripple approximation is simply a
convenient assumption that simplifies the steady-state solution and which is often sat-
isfied in practical converter systems. A relaxed version of the small-ripple approxima-
tion, known as linear-ripple approximation, is also often employed. According to the
linear-ripple approximation, ripple components of the vC(t)’s and iL(t)’s are allowed
to be triangular waveshapes. It can be shown that the steady-state analysis proceeds as
stated earlier for the small-ripple approximation. In practice, the linear-ripple approx-
imation is easier to meet, especially when considering inductor current waveforms.
As long as the small-ripple approximation is satisfied for capacitor voltages, in fact,
inductor currents retain triangular waveforms even when the peak-to-peak ripple is
not negligibly small compared with the dc component.

It is worth mentioning, at this point, that the above discussion is implicitly
focused on the converters operating in continuous conduction mode (CCM), where
the use of the small-ripple or linear-ripple approximation is well justified for all the
converter state variables. As for converters operating in discontinuous conduction
mode (DCM), on the other hand, the above-mentioned assumption does not hold and
the analysis becomes somewhat more involved. Further details on DCM modeling
can be found in [1, 121–123].

1.2.1 Boost Converter Example

As an example, consider the Boost converter depicted in Fig. 1.3. The physical induc-
tor is represented by a series combination of an ideal inductor L and a resistive
element rL, modeling the inductor copper losses. Other converter components are
assumed to be ideal.

With the switch in position 1 for an interval DTs, the voltage across the ideal
inductor L is

vL(t) = Vg − rLIL, (1.8)

where the small-ripple approximation iL(t) ≈ IL has been employed. In the same
topological state and under the small-ripple approximation vC(t) ≈ VC , the output
capacitor current is

iC(t) = −VC

Ro

. (1.9)
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Figure 1.3 Boost converter example.

Similarly, with the switch in position 0 for an interval D′Ts = (1 − D)Ts, one has

vL(t) = Vg − rLIL − VC ,

iC(t) = IL − VC

Ro

.
(1.10)

Waveforms vL(t) and iC(t), including the small-ripple approximation, are
shown in Fig. 1.4. Imposing the volt-second balance (1.4) and the charge balance
(1.6), one obtains

vL(t) = D
(
Vg − rLIL

)
+ D′(Vg − rLIL − VC

)
= 0,

iC(t) = D

(
−VC

Ro

)
+ D′

(
IL − VC

Ro

)
= 0,

(1.11)

the solution of which is

IL =
Vg

D′2Ro

1
1 + rL

D′2Ro

,

VC =
Vg

D′
1

1 + rL

D′2Ro

.

(1.12)

Ts0

DTs (1 − D)Ts

t

vL(t)

Vg − rLIL

Vg − VC − rLIL

t

iC(t)

−VC/Ro

IL − VC/Ro

Figure 1.4 Boost converter example:
waveforms based on the small-ripple
approximation.
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The converter voltage conversion ratio can be evaluated from the
above-mentioned equations as

M(D) � Vo

Vg

=
VC

Vg

=
1
D′

1
1 + rL

D′2Ro

, (1.13)

which reduces to the familiar Boost M(D) = 1/D′ for a lossless converter (rL = 0).

1.2.2 Estimation of the Switching Ripple

Once the dc converter quantities are determined, one can go back to the converter
topology and estimate both the waveshapes and the amplitudes of the steady-state
inductor current and capacitor voltage ripples.

In the Boost converter example, as shown in Fig. 1.4, the inductor voltage
waveform vL(t) is approximately a piecewise-constant signal. The inductor current
ripple is therefore a triangular waveform with slopes determined by vL(t). Neglect-
ing, for simplicity, the inductor series resistance rL, the peak-to-peak current ripple
ΔiL can be determined by integrating vL(t)/L over either one of the two switching
subintervals,

ΔiL =
1
L

∫ DTs

0
vL(τ) dτ =

Vg

L
DTs =

Ts

L
Vg

(
1 −

Vg

Vo

)
. (1.14)

Similarly, one can reconstruct the capacitor voltage ripple waveshape by inte-
gration of iC(t) shown in Fig. 1.4. More accurate results can be obtained by removing
the small-ripple approximation and by deriving iC(t) using, this time, the triangular
waveshape iL(t) determined earlier. The corresponding waveforms are depicted in
Fig. 1.5.
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t Figure 1.5 Boost converter example:
estimation of the ripple waveshapes.
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To determine the peak-to-peak output voltage ripple, similar to finding ΔiL,
one can directly integrate iC(t)/C over either one of the two switching subintervals,

ΔvC =
1
C

∫ DTs

0
|iC(τ)| dτ =

Vo

RoC
DTs =

Ts

RoC

(
Vo − Vg

)
. (1.15)

1.2.3 Voltage Conversion Ratios of Basic Converters

Systematic application of the volt-second and charge balance equations, along with
the small-ripple approximation, allows straightforward steady-state analysis of any
PWM converter. Table 1.1 reports the CCM conversion ratios of the three basic con-
verter topologies in the ideal (lossless) case.

TABLE 1.1 Ideal Voltage Conversion Ratios of Basic Converters in CCM

Converter Conversion Ratio

Vg

L

RoC

1

0
iL(t)

vo(t)

+

−

+−

Buck

M(D) = D

+− vo(t)
Vg

Ro

L

C

+

−

1

0

iL(t)

Boost

M(D) =
1

1 − D

+−
Vg

RoL C

iL(t)

1

vo(t)

+

−

0

Buck-Boost

M(D) = − D

1 − D
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Figure 1.6 Analog voltage-mode control of a synchronous Buck converter.

1.3 CONVERTER DYNAMICS AND CONTROL

The main topic of this chapter—converter averaged small-signal modeling—is now
discussed. Consider voltage-mode control of a synchronous Buck converter as a sim-
ple case study to review the basic concepts of the approach. A block diagram of the
system is illustrated in Fig. 1.6. The term synchronous referred to the Buck converter
is associated with the implementation of the rectifying, or secondary, switch: instead
of the usual free-wheeling diode used as a passive rectifier, the Buck converter of
Fig. 1.6 makes use of a controlled switch that is driven by the complementary version
c′(t) of the PWM signal,

c′(t) � 1 − c(t). (1.16)

A primary advantage of synchronous rectification is the smaller voltage drop across
the rectifier switch during conduction, as opposed to the diode rectifier, an essential
requirement when regulating low output voltages. Furthermore, the rectifier switch
becomes current bidirectional, therefore guaranteeing CCM operation and converter
controllability even at no load.

In Fig. 1.6, the load is represented by an independent current source rather
than a resistance. This is an appropriate modeling choice for many digital loads in
point-of-load applications, in which the converter output current depends on the load
internal activity and is independent of the output voltage.

The converter is feedback-controlled in order to achieve regulation of the output
voltage vo(t) at a constant reference value Vref . To this end, a control error e(t) is
found as the difference between the analog setpoint Vref and the sensed signal vs(t),
where vs(t) is a scaled, filtered version of vo(t). In Fig. 1.6, sensing, scaling, and
analog filtering of vo(t) are modeled by the transfer function H(s).

The analog continuous-time compensator processes the error signal and out-
puts a control command u(t). As exemplified in Fig. 1.7, u(t) is then compared with
the carrier r(t) of a trailing-edge pulse width modulator, which in turn produces the
modulated gate drive signal c(t).
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Figure 1.7 Typical analog
control waveforms.

The end goal of the modeling step is the derivation of an equivalent small-signal
model of the control loop. The process involves, as anticipated, averaging and lin-
earizing the converter behavior around the above steady-state operating point. In the
following, notation (1.2) is employed to denote converter quantities averaged over a
switching period.

1.3.1 Converter Averaging and Linearization

Referring to the Buck converter shown in Fig. 1.8(a) and applying the moving average
operator (1.1) to voltage vx at the switching node, one has

vx(t) ≈ d(t)vg(t), (1.17)

while the averaged converter input current ig is

ig(t) ≈ d(t)iL(t). (1.18)

These results1 allow construction of an averaged equivalent circuit, as shown in
Fig. 1.8(b) [1], which is now time-invariant but still nonlinear.

Perturbation of the circuit equations around the steady-state operating point and
successive linearization yields

v̂x(t) ≈ Dv̂g(t) + Vgd̂(t),

îg(t) ≈ DîL(t) + ILd̂(t),
(1.19)

1Approximation 〈c(t)x(t)〉Ts
≈ d(t)〈x(t)〉Ts

is justified, in general, whenever x(t) has negligible
switching content, that is, when it can be regarded as an essentially baseband signal. One exception to this
occurs when x(t) has a triangular switching ripple, in which case the approximation is justified even in the
presence of a large ripple component. In conclusion, one can safely assume 〈c(t)x(t)〉Ts

≈ d(t)〈x(t)〉Ts

under the small-ripple or linear-ripple approximations already discussed in Section 1.2.
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Figure 1.8 (a) Buck converter and its (b) averaged and (c) small-signal models.

where x̂(t) = x(t) − X denotes the small-signal component of x(t) with respect to
the dc component X . Figure 1.8(c) illustrates the averaged, small-signal equivalent
circuit of the Buck converter obtained after the linearization process. From the equiva-
lent circuit model, evaluation of the control-to-output transfer function Gvd(s) yields

Gvd(s) � v̂o(s)

d̂(s)

∣∣∣∣∣
v̂g=0,îo=0

= Vg

1 + srCC

1 + s(rC + rL)C + s2LC

= Gvd0

1 + s
ωESR

1 + s
Qω0

+ s2

ω0
2

, (1.20)
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with
Gvd0 � Vg,

ωESR � 1
rCC

,

ω0 � 1√
LC

,

Q � 1
rC + rL

√
L

C
.

(1.21)

The converter small-signal behavior is therefore that of a second-order system with
resonant frequency and Q-factor (ω0, Q), and with a real left half-plane (LHP) zero
located at s = −ωESR . The zero originates from the equivalent series resistance (ESR)
rC of the output capacitor.

1.3.2 Modeling of the Pulse Width Modulator

A small-signal model of the pulse width modulator is necessary in order to develop a
complete small-signal model of a converter system. This topic is particularly impor-
tant as there are significant differences in the PWM small-signal dynamics between
analog and digital control.

There are two main families of pulse width modulators:

• Naturally sampled pulse width modulators (NSPWMs) process a continuous-
time modulating signal u(t). They are commonly employed in analog con-
trollers.

• Uniformly sampled pulse width modulators (USPWMs) are characterized by
a discrete-time modulating signal u[k], which is updated once every switch-
ing period and held constant throughout the entire switching interval during its
comparison with the PWM carrier. USPWMs are most commonly employed
in digital control loops, where the control signal is inherently discrete in time,
as detailed further in the following chapters. It is worth mentioning, however,
that it is possible to apply uniformly sampled modulation in analog control:
the continuous-time control command u(t) is in this case subject to a sample
& hold operation, the output of which is then compared with the PWM carrier
using an analog comparator.

Consider a naturally sampled PWM employed in analog, continuous-time con-
trol loop around a switched-mode converter. As illustrated in Fig. 1.7, the duty cycle
d[k] applied to the power converter during the kth switching cycle is equal to

d[k] =
u(tk)
Vr

, (1.22)

where tk represents the instant at which u(t) intersects the PWM carrier r(t) dur-
ing the kth switching cycle, while Vr is the PWM carrier amplitude. Duty cycle d[k]
during the kth switching cycle therefore corresponds to a sampled version of the
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modulating signal u(t). Sampling occurs as a result of the intersection between u
and r and is inherent to the PWM process–this is the main reason why these types
of modulator are designated as naturally sampled. For small perturbations û around
a steady-state value U , every sampling instant occurs at the same position in the
switching interval, and the equivalent sampling performed by the PWM becomes
uniform.

From (1.22), one also has that d[k] is determined by the instantaneous value of
u(t) at its intersection with the PWM carrier. The absence of any delay between the
natural sampling of u(t) operated by the modulator and the generation of the PWM
modulated edge justifies, at least on an intuitive level, the common practice in analog
control modeling to treat the PWM as a simple gain block. Denoting with û and d̂
the control command and duty cycle small-signal components with respect to their
steady-state values, the PWM transfer function is therefore

GPWM (s) � d̂

û
=

1
Vr

. (1.23)

It should be noted that (1.23) neglects propagation delays in the PWM com-
parator and in the gate driving circuitry between the pulse width modulator and the
power switch. Such delays, however, are usually much shorter than the switching
period Ts. It follows that:

Naturally sampled PWMs do not contribute to the small-signal dynamics of the
control loop, except for a constant gain factor.

In contrast to the naturally sampled modulators, the uniformly sampled mod-
ulators do introduce dynamics in the loop in the form of an equivalent small-signal
delay. This important distinction is further justified and explained in Chapter 2.

1.3.3 The System Loop Gain

Figure 1.9 shows a block diagram of the complete small-signal model of a closed-loop
regulated converter. In the diagram, Gc(s) represents the compensator transfer func-
tion to be designed.

From the block diagram, the system loop gain T (s) can be defined by opening
the feedback loop as suggested in Fig. 1.10 and by evaluating the resulting transfer

Gc(s) GPWM (s) Gvd(s)

H(s)

v̂ref (t)

ˆ̄vo(t)d̂(t)û(t)

ˆ̄vs(t)
+
−

Figure 1.9 Small-signal block diagram of the analog voltage-mode control.
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T (s) − ûy(s)

ûx(s)

Gc(s) GPWM (s) Gvd(s)

H(s)

v̂ref (t)

ˆ̄vo(t)d̂(t)ûx(t)

ˆ̄vs(t)

ûy(t)

+
−

≜

Figure 1.10 Definition of the system loop gain T (s).

function between ûx and ûy ,

T (s) � −
ûy(s)
ûx(s)

∣∣∣∣
v̂ref =0

= Gc(s)GPWM (s)Gvd(s)H(s) . (1.24)

The uncompensated loop gain Tu(s), on the other hand, is defined as the system
loop gain when a unity compensation is employed, that is, when Gc(s) = 1,

Tu(s) � GPWM (s)Gvd(s)H(s) . (1.25)

From (1.20), (1.23), and (1.24), one has

Tu(s) =
Gvd0

Vr

1 + s
ωESR

1 + s
Qω0

+ s2

ω0
2

H(s). (1.26)

Result (1.26) represents the starting point for commonly applied
frequency-domain compensator design techniques. Analog compensator design
proceeds with usual techniques of linear continuous-time control, with the main
goals of ensuring sufficient stability margins for the closed-loop system and a control
bandwidth adequate for the application.

1.3.4 Averaged Small-Signal Models of Basic Converters

The averaging and linearization steps carried out in Section 1.3.1 can be applied
to any converter topology, resulting in a corresponding small-signal equivalent cir-
cuit. Figure 1.11 shows the averaged small-signal equivalent circuits of the Buck,
Boost, and Buck–Boost converters. In the models, v̂g(t) and îo(t) are the small-signal
components of the input voltage and output current, respectively, which act as distur-
bances for the control system. The control input, on the other hand, is represented by
the small-signal component of the duty cycle command d̂, which acts on the circuit
via current and voltage generators having operating point dependent gains. Derivation
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Figure 1.11 Averaged small-signal models of the (a) Buck, (b) Boost, and (c) Buck–Boost
converters.

of the control-to-output transfer function, or any other input-output transfer function,
can be accomplished via straightforward linear circuit analysis. The results and fur-
ther details can be found in [1]. If needed, dynamic effects of the output capacitor
ESR can be included as well, following [124].

Note that the above-mentioned small-signal models depend on the average con-
verter operating point

(
Vg, Io,D

)
. This fact is compatible with the basic idea behind

the averaged modeling approach that low-frequency dynamics are described accu-
rately, while approximations inherent to the method are tolerated in the proximity and
above the Nyquist rate. In contrast, as discussed further in Chapter 3, the discrete-time
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small-signal models depend on the converter waveforms at a specific point in
time.

1.4 STATE-SPACE AVERAGING

State-space averaging [119, 120] presents a general mathematical formulation for
the averaged small-signal modeling approach summarized in Section 1.3.1. In this
formulation, the averaged model is derived in a state-space representation form.

Consider the converter operation as alternating between two topological states
S0 and S1, each described by a linear set of state-space equations,

dx

dt
= Acx(t) + Bcv(t),

y(t) = Ccx(t) + Ecv(t),
(1.27)

where x, v, and y represent the state, input, and output vectors, respectively. Matrices
Ac, Bc, Cc, and Ec define the state-space model of the converter for each subtopol-
ogy, with c ∈ {0, 1} being the PWM signal denoting the topological state.

In general, the converter state-space equations can be written, using the PWM
signal c(t) and its complement c′(t) = 1 − c(t), as

dx

dt
= c(t) [A1x(t) + B1v(t)] + c′(t) [A0x(t) + B0v(t)],

y(t) = c(t) [C1x(t) + E1v(t)] + c′(t) [C0x(t) + E0v(t)].
(1.28)

It is possible now to apply the moving average operator 〈 . 〉Ts
to both sides

of the foregoing equations. Under the small-ripple or linear-ripple approximations
already introduced in Section 1.2, an averaged, large-signal state-space model is
obtained,

dx

dt
= [d(t)A1 + d′(t)A0]x(t) + [d(t)B1 + d′(t)B0]v(t),

y(t) = [d(t)C1 + d′(t)C0]x(t) + [d(t)E1 + d′(t)E0]v(t).
(1.29)

As expected, the moving average operator smooths out the time-varying
nature of the system, and the system is modeled by a time-invariant, nonlinear set of
state-space equations. From this point on, one proceeds with the evaluation of the
converter steady-state operating point and with the perturbation/linearization step to
obtain the small-signal model.

1.4.1 Converter Steady-State Operating Point

The average steady-state operating point is found from (1.29) by imposing constant
inputs d = D and v(t) = V and corresponding constant averaged state and output
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vectors x(t) = X and y(t) = Y ,

0 = [DA1 + D′A0]X + [DB1 + D′B0]V ,

Y = [DC1 + D′C0]X + [DE1 + D′E0]V .
(1.30)

The first equation, in particular, expresses in a general form the inductor volt-second
and capacitor charge balance principles. It corresponds to solving the converter
network under the assumptions that iL(t) and vC(t) are constants of unknown
magnitudes.

With the definitions
A � DA1 + D′A0,

B � DB1 + D′B0,

C � DC1 + D′C0,

E � DE1 + D′E0,

(1.31)

one finds the steady-state solution for the states and the outputs,

X = −A−1BV ,

Y =
[
−CA−1B + E

]
V .

(1.32)

1.4.2 Averaged Small-Signal State-Space Model

One is now in the position to linearize (1.29) around the converter steady-state oper-
ating point (V ,D). As usual, all the relevant quantities are expressed in terms of their
steady-state value and small-signal ac component as

x̂(t) � x(t) − X,

d̂(t) � d(t) − D,

v̂(t) � v(t) − V .

(1.33)

The state-space averaged, small-signal model of the converter is then

dx̂

dt
= Ax̂(t) + F d̂(t) + Bv̂(t),

ŷ(t) = Cx̂(t) + Gd̂(t) + Ev̂(t),

(1.34)

with
F � (A1X + B1V ) − (A0X + B0V ),

G � (C1X + E1V ) − (C0X + E0V ).
(1.35)
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Assume now an initial unperturbed condition x̂(0) = 0 and derive the system’s
forced response via Laplace transformation of (1.34),

sx̂(s) = Ax̂(s) + F d̂(s) + Bv̂(s)

ŷ(s) = Cx̂(s) + Gd̂(s) + Ev̂(s)

⇒ ŷ(s) =
(
C (sI − A)−1 F + G

)
d̂(s) +

(
C (sI − A)−1 B + E

)
v̂(s).

(1.36)
From this result, one can derive transfer functions needed for control design pur-
poses. For instance, the control transfer matrix, which relates the effect of the control
command on the converter outputs, is

W (s) � ŷ(s)

d̂(s)

∣∣∣∣∣
v̂=0

= C (sI − A)−1 F + G , (1.37)

whereas the disturbance transfer matrix is

W D(s) � ŷ(s)
v̂(s)

∣∣∣∣∣
d̂=0

= C (sI − A)−1 B + E . (1.38)

1.4.3 Boost Converter Example

As an example, the state-space averaged small-signal model of the nonideal Boost
converter illustrated in Fig. 1.3 is derived in this section.

With the switch in position 1, one has

diL
dt

=
vg(t) − rLiL(t)

L
(1.39)

for the inductor loop equation and

dvC

dt
=

dvo

dt
= −vC(t)

RoC
(1.40)

for the capacitor node equation. Observe that, in this example, vo(t) = vC(t) as zero
ESR is assumed for the output capacitor.

Having defined the state vector as x � [iL vC ]T = [iL vo]
T , the state

equation of subtopology 1 is

dx

dt
=

⎡
⎢⎢⎣

−rL

L
0

0 − 1
RoC

⎤
⎥⎥⎦

︸ ︷︷ ︸
A1

x(t) +

⎡
⎢⎣

1
L

0

⎤
⎥⎦

︸ ︷︷ ︸
B1

vg(t). (1.41)
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With the switch in position 0, on the other hand, one has

diL
dt

=
vg(t) − rLiL(t) − vo(t)

L
(1.42)

and
dvo

dt
=

iL(t)
C

− vo(t)
RoC

. (1.43)

The state equation relative to subtopology 0 is then

dx

dt
=

⎡
⎢⎢⎢⎣

−rL

L
− 1

L

1
C

− 1
RoC

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
A0

x(t) +

⎡
⎢⎣

1
L

0

⎤
⎥⎦

︸ ︷︷ ︸
B0

vg(t). (1.44)

Define now the system output to coincide with the state vector, that is, y(t) =
x(t), and therefore C1 = C0 = I and E1 = E0 = 0. Matrices A, B, and C of the
averaged model can then be evaluated. The result is

A � DA1 + D′A0 =

⎡
⎢⎢⎢⎣

−rL

L
−D′

L

D′

C
− 1

RoC

⎤
⎥⎥⎥⎦ ,

B � DB1 + D′B0 =

⎡
⎢⎣

1
L

0

⎤
⎥⎦ ,

C � DC1 + D′C0 =

⎡
⎣ 1 0

0 1

⎤
⎦ .

(1.45)

Solving for the converter operating point according to (1.32) yields

X =

⎡
⎣ IL

Vo

⎤
⎦ =

⎡
⎢⎢⎢⎢⎣

1
rL + D′2Ro

1
D′

1
1 + rL

D′2Ro

⎤
⎥⎥⎥⎥⎦Vg. (1.46)

As expected, this is the same result as (1.12).
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As for the small-signal model, as B1 = B0, matrix F evaluates as

F = (A1 − A0)X =

⎡
⎢⎢⎣

Vo

L

−IL

C

⎤
⎥⎥⎦ , (1.47)

whereas G = 0 as C1 = C0. The control transfer matrix is

W (s) = C (sI − A)−1 F + G =

⎡
⎢⎢⎢⎢⎢⎣

Gid(s) � îL(s)

d̂(s)

Gvd(s) � v̂o(s)

d̂(s)

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

2Vo

rL + D′2Ro

1 + sRoC
2

Δ(s)

Vo

D′

1 − rL

D′2Ro

1 + rL

D′2Ro

1 − s L
D′2Ro−rL

Δ(s)

⎤
⎥⎥⎥⎥⎥⎦ , (1.48)

with

Δ(s) � 1 + s
rL

D′2Ro

(
RoC + L

rL

1 + rL

D′2Ro

)
+ s2 LC

D′2
1

1 + rL

D′2Ro

. (1.49)

1.5 DESIGN EXAMPLES

This section presents some examples of analog control designs based on the
converter small-signal models developed in Sections 1.3.1 and 1.4 and standard
frequency-domain-based compensator design techniques.

1.5.1 Voltage-Mode Control of a Synchronous Buck
Converter

Figure 1.12 illustrates an implementation example for an analog voltage-mode con-
troller in the system of Fig. 1.6. The system makes use of an analog integrated circuit
containing an error amplifier and an analog pulse width modulator. The control com-
pensation is implemented via an external passive network, which shapes the response
of the error amplifier.
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Figure 1.12 Synchronous Buck example: analog voltage-mode control scheme.

TABLE 1.2 Synchronous Buck Example Parameters

Parameter Value

Input voltage Vg 5 V
Output voltage Vo 1.8 V
Load current Io,max 5 A
Switching frequency fs 1 MHz
Filter inductance L 1 μH
Inductor series resistance rL 30 mΩ
Filter capacitance C 200 μF
Capacitor equivalent series resistance rC 0.8 mΩ
PWM carrier amplitude Vr 1 V
Voltage sensing gain H 1 V/V

Design specifications and power stage parameters are summarized in Table 1.2.
As reported in the table, the power stage nonidealities include a nonzero inductor
series resistance rL and a nonzero capacitor ESR rC .

The small-signal model of the system is presented in Section 1.3, and the
uncompensated loop gain expression is given in (1.26). The magnitude and phase
Bode plots of Tu(s) are shown in Fig. 1.13. The dc value of the uncompensated loop
gain is

Tu0 � Tu(s = 0) =
Gvd0

Vr

H =
Vg

Vr

= 5 ⇒ 14 dB. (1.50)
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Figure 1.13 Synchronous Buck example: Bode plots of the uncompensated loop gain Tu(s).

The system resonance occurs at

ω0 =
1√
LC

≈ 2π . (11 kHz) , (1.51)

while the rC-related zero is located at

ωESR =
1

rCC
≈ 2π . (1 MHz). (1.52)

As a design goal, the target crossover frequency is set at fc = 100 kHz, that
is, 1/10 of the converter switching frequency, and a phase margin target is set at
ϕm = 55◦. At f = fc, the uncompensated loop gain exhibits a phase of about −171◦,
implying that a lead type of compensation is required in the neighborhood of fc to
boost the phase margin by θ = 46◦. Such compensation is obtained by forming a
pole-zero pair

GPD(s) � GPD0

1 + s
ωz

1 + s
ωp

. (1.53)

Subscript PD stands for proportional-derivative, which is a term commonly used for
the lead compensation.
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The maximum phase boost generated by the PD pole-zero pair occurs at

ωmax =
√

ωzωp (1.54)

and that it equals

∠GPD(jωmax ) = arctan
(√

ωp

ωz

)
− arctan

(√
ωz

ωp

)
=

π

2
− 2 arctan

(√
ωz

ωp

)
.

(1.55)

As the phase lead provided by the compensator should be equal to θ = 46◦, the
required ωz/ωp ratio can be found from (1.55) which, using ωc = ωmax = √

ωzωp,
yields the values of both ωz and ωp,

ωz = ωc

√
1 − sin θ

1 + sin θ
= 2π . (40 kHz),

ωp = ωc

√
1 + sin θ

1 − sin θ
= 2π . (250 kHz).

(1.56)

The dc gain GPD0 of the lead action is determined by imposing unity loop gain
at the desired crossover frequency fc,

|T (jωc)| = |Tu(jωc)|GPD0

√√√√√√1 +
(

ωc

ωz

)2
1 +
(

ωc

ωp

)2 = 1, (1.57)

which yields

GPD0 =
1

|Tu(jωc)|

√√√√√√ 1 +
(

ωc

ωp

)2
1 +
(

ωc

ωz

)2 ≈ 6.2 ⇒ 15.8 dB. (1.58)

Figure 1.14 illustrates the magnitude and phase Bode plots of the lead
compensation.

As a last design step, adding an integral action, that is, a compensation pole at dc
nulls the steady-state regulation error and, more generally, improves the regulation by
increasing the low-frequency loop gain magnitude. This is accomplished by including
a lag term of the type

GPI (s) � GPI∞

(
1 +

ωl

s

)
. (1.59)

Such term is also known as proportional–integral (PI) compensation.
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Figure 1.14 Synchronous Buck example: Bode plots of the lead (PD) compensation transfer
function.

As a general rule, the PI term should not significantly affect either the system
crossover frequency or its phase margin. Therefore, the high-frequency gain GPI∞ is
set to one, and the zero corner frequency ωl is selected such that ωl � ωc. A good
choice is to let ωl < ωc/10 = 2π . (10 kHz). In this design example, choose

ωl = 2π . (8 kHz) . (1.60)

The complete proportional-integral-derivative (PID) compensator transfer
function is therefore

GPID(s) =
(
1 +

ωl

s

)
︸ ︷︷ ︸

PI

. GPD0

1 + s
ωz

1 + s
ωp︸ ︷︷ ︸

PD

, (1.61)

where all the corner frequencies and gains are now determined. Figure 1.15 shows
Bode plots of the designed PID compensator transfer function.
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Figure 1.15 Synchronous Buck converter example: Bode plots of the lead (PD) and PID
compensation transfer functions.

Going back to the external compensation network depicted in Figure 1.12,
assuming C3 � C2 the corresponding transfer function is

Gc(s) � − û(s)
v̂o(s)

=
(

1 +
1

sR3C3

)
︸ ︷︷ ︸

PI

. R3

R2

1 + s (R1 + R2) C1

1 + sR1C1︸ ︷︷ ︸
PD

. 1
1 + sR3C2︸ ︷︷ ︸

HF Pole

,

(1.62)
where the different portions of the control action have been highlighted. Circuit-level
design of the compensation network can now be performed by equating (1.61) and
(1.62). Note that (1.62) allows for an additional high-frequency pole to be placed at

ωp2
� 1

R3C2
. (1.63)

Such pole is commonly used to attenuate the gain of the compensator at high frequen-
cies and prevent the propagation of switching harmonics produced by the converter
through the feedback loop—a circumstance that can otherwise result in undesired
effects. A good choice for ωp2

is

ωp2
= 10ωc = 2π . (1 MHz) , (1.64)
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Figure 1.16 Synchronous Buck example: Bode plots of the lead (PD), PID, and overall
compensation transfer functions.

which ensures that the added pole has limited impact on the designed phase mar-
gin. Figure 1.16 compares the Bode plots of GPD(s), GPID(s), and Gc(s), while
the magnitude and phase responses of the system loop gain are shown in Fig. 1.17.
The combined effects of the low-frequency PI term and the high-frequency pole
on the overall compensator transfer function lead to ≈ 10◦ phase margin loss with
respect to the target ϕm = 55◦. Such phase margin loss could be easily considered
by imposing a correspondingly higher value on ϕm in the above-mentioned design
procedure.

The above-mentioned compensator design can now be validated—and
refined, if needed—via computer simulations. To this end, a Matlab® model of the
voltage-controlled Buck converter pictured in Fig. 1.12 has been set up. The scheme
depicted in Fig. 1.18 employs Middlebrook’s approach [1, 78] to obtain T (s) by
simulation and to validate the averaged small-signal models employed in the design
phase [1]. The closed-loop system is excited by a sinusoidal perturbation upert(t)
of small amplitude at frequency ωpert . Signals ux(t) and uy(t) are acquired over a
number of oscillation periods, and their Fourier components ux(ωpert ) and uy(ωpert )
at ωpert are determined via an FFT-based postprocessing. The procedure is repeated
for a number of perturbation frequencies, in order to extract the simulated loop gain
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Figure 1.17 Synchronous Buck example: Bode plots of the theoretical and simulated
system loop gain.
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Figure 1.19 Synchronous Buck example: 1.79 V ↔ 1.8 V step reference responses.

Tsim(jωpert ) as

Tsim(jωpert ) = −
uy(ωpert )
ux(ωpert )

. (1.65)

Simulation points thus determined are superimposed to the theoretical loop gain Bode
plots in Fig. 1.17.

Figure 1.19 illustrates the simulated response of the closed-loop system to a
10 mV step of the reference voltage, from 1.79 to 1.8 V and then back to 1.79 V,
while Fig. 1.20 reports the simulated response of the system to an abrupt step in
the load current, from 2.5 to 5 A and then back to 2.5 A. The observed closed-loop
transient responses correlate well with the expectations based on the values of the
crossover frequency and phase margin in this design example.

Regarding the step load response, one important quantity to be evaluated at
design stage is the closed-loop output impedance Zo,cl(s), defined as the converter
small-signal output impedance evaluated with the control loop closed,

Zo,cl(s) � − v̂o(s)

îo(s)

∣∣∣∣∣
v̂ref =0,v̂g=0

. (1.66)
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Figure 1.20 Synchronous Buck example: 2.5 A ↔ 5 A step load responses.

The closed-loop output impedance Zo,cl(s) can be expressed in terms of the converter
open-loop output impedance Zo(s) and the system loop gain as [1]

Zo,cl(s) =
Zo(s)

1 + T (s)
, (1.67)

with

Zo(s) � − v̂o(s)

îo(s)

∣∣∣∣∣
û=0,v̂g=0

. (1.68)

The open-loop output impedance is readily evaluated from the averaged small-signal
equivalent circuit of the Buck converter (Fig. 1.11),

Zo(s) = rL

(1 + srCC)
(
1 + s L

rL

)
1 + s(rC + rL)C + s2LC

. (1.69)

Bode plots of both Zo,cl(s) and Zo(s) for the voltage-mode control loop under con-
sideration are shown in Fig. 1.21. Below the control bandwidth, the output impedance
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Figure 1.21 Synchronous Buck example: Bode plots of the open-loop and closed-loop
output impedances.

is reduced by the feedback loop because of the large loop gain. At higher frequencies,
on the other hand, Zo,cl(s) and Zo(s) practically coincide.

1.5.2 Average Current-Mode Control of a Boost Converter

As a second example, consider average current-mode control of a Boost converter
depicted in Fig. 1.22. The converter parameters are listed in Table 1.3.

The Boost converter operates from a dc input voltage Vg = 120 V and delivers
500 W maximum power to a resistive load Ro. At the maximum power, the output
voltage equals 380 V, so

Po =
Vo

2

Ro

=
(380 V)2

Ro

= 500 W ⇒ Ro ≈ 289 Ω. (1.70)

The Boost inductor current iL(t) is converted into a voltage vs(t) by a 0.1 Ω
shunt resistor Rsense and compared with the control setpoint Vref . The regulation error
is processed by an analog compensator implemented by an op-amp-based circuit. A
symmetrical (triangle-wave) analog pulse width modulator converts the output u(t)
of the error amplifier into the logic gate-drive control c(t).
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Figure 1.22 Average current-mode control of a Boost converter.

TABLE 1.3 Boost Converter Example
Parameters

Parameter Value

Input voltage Vg 120 V
Output voltage Vo 380 V
Power rating Po 500 W
Switching frequency fs 100 kHz
Filter inductance L 500 μH
Inductor series resistance rL 20 mΩ
Filter capacitance C 220 μF
PWM carrier amplitude Vr 1 V
Current sensing gain Rsense 0.1 Ω

At maximum output power and neglecting parasitics, the steady-state duty cycle
is determined from

M(D) =
Vo

Vg

=
380 V
120 V

=
1

1 − D

⇒ D ≈ 0.68. (1.71)

The averaged small-signal model of the Boost converter has been derived
in Section 1.4.3. Accounting for the additional sensing resistance Rsense is simply
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accomplished by substituting rL with rL + Rsense ,

rL → rL + Rsense . (1.72)

From (1.48), the control-to-inductor current dynamics, described by the transfer func-
tion Gid(s), has the form

Gid(s) = Gid0

1 + s
ωz

1 + s
ω0Q

+ s2

ω0
2

, (1.73)

with
Gid0 = 26.3 A ⇒ 28.4 dB,

ωz = 2π . (5 Hz) ,

ω0 = 2π . (152 Hz) ,

Q = 3.7.

(1.74)

The uncompensated current loop gain is proportional to Gid(s) and equals

Tu(s) =
Rsense

Vr

Gid(s). (1.75)

Bode plots of Gid(s) are illustrated in Fig. 1.23. Thanks to the LHP zero located
at s = −ωz , the transfer function retains a −20 dB /decade slope above the system
resonance, allowing for a high-bandwidth control to be designed using a simple PI
compensation law,

GPI (s) = GPI∞

(
1 +

ωPI

s

)
. (1.76)

As discussed in the Buck voltage-mode control example, a high-frequency pole can be
included in the compensator transfer function in order to provide some filtering action
on the harmonic content of the sensed signal. For instance, set such high-frequency
pole at half the switching rate, that is, at 50 kHz. With this choice, the compensator
transfer function to be designed is

Gc(s) = GPI∞

(
1 +

ωPI

s

)
︸ ︷︷ ︸

PI

. 1
1 + s

ωHF︸ ︷︷ ︸
HF Pole

, (1.77)

ωHF = 2π . (50 kHz) . (1.78)

On the basis of the transfer function template, the objective is to design a
ωc = 2π . (10 kHz) bandwidth compensation with a ϕm = 50◦ phase margin. The
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Figure 1.23 Boost converter example: Bode plots of the control-to-inductor current transfer
function.

high-frequency pole located at 50 kHz introduces, at the desired control bandwidth,
an additional phase lag equal to

arctan
(

10 kHz
50 kHz

)
≈ 11◦, (1.79)

and therefore the PI portion of the compensation must be designed for a target phase
margin of ϕ′

m = 50◦ + 11◦. Having clarified this point, calculation of the unknown
PI coefficients GPI∞ and ωPI is straightforward once the magnitude and the phase of
the system uncompensated loop gain are evaluated at the target control bandwidth,
that is, at the target crossover frequency,

|Tu(jωc)| ≈ 1.2 ⇒ 1.6 dB,

∠Tu(jωc) ≈ −90◦.
(1.80)

An alternative, quicker approach to estimate Tu(s) is to employ a high-frequency
approximation of Gid(s). From (1.48), it is easy to see that, as long as ω � ω0, one
has

Gid(s) ≈
Vo

sL
(ω � ω0), (1.81)
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and therefore the inductor current dynamics behaves almost ideally around the target
control bandwidth. This approximation is illustrated in Fig. 1.23 as well. One can
verify that (1.81) very accurately predicts the values reported in (1.80).

Derivation of ωPI is based on the required phase margin,

−π

2
+ arctan

(
ωc

ωPI

)
+ ∠Tu(jωc) = −π + ϕ′

m, (1.82)

whereas the value of GPI∞ is imposed by the desired crossover frequency ωc,

GPI ∞

√
1 +
(

ωc

ωPI

)2

|Tu(jωc)| = 1. (1.83)

Solving the above-mentioned equations yields

GPI∞ = 0.73 ⇒ −2.7 dB,

ωPI = 2π . (5.5 kHz) .
(1.84)

Bode plots of the compensator transfer function are shown in Fig. 1.24. Both the
uncompensated and compensated current loop gains Tu(s) and T (s) are shown in
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Figure 1.24 Boost converter example: Bode plots of the compensator transfer function.
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Figure 1.26 Boost converter example: 500 W→250 W step-reference response.

Fig. 1.25. Figure 1.26 illustrates the simulated closed-loop response to a step varia-
tion in the current setpoint corresponding to a 500 to 250 W reduction in the input
power.

With the compensator transfer function so determined, one is in position
to carry out the circuit-level design of the external compensation network
(R1, R2, C2, C

′
2) illustrated in Fig. 1.22. Within the finite gain-bandwidth product
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limitation of the error amplifier, the compensator transfer function is

Gc(s) � − û(s)
v̂o(s)

=
R2

R1

(
1 +

1
sR2C2

)
︸ ︷︷ ︸

PI

. 1
1 + sR2C

′
2︸ ︷︷ ︸

HF Pole

(C2 � C ′
2), (1.85)

and determination of the compensation network parameters starts by equating (1.85)
to (1.77).

1.6 DUTY RATIO d[k] VERSUS d(t)

In the foregoing discussions, the cycle-by-cycle duty ratio d[k], intended as a
discrete-time signal, and d(t), that is, a continuous-time signal that acts as the
control input for the converter in the context of averaged models, have intentionally
been conflated. Before closing the review of analog (continuous-time) modeling and
control in this chapter, it is useful to highlight a few aspects regarding the physical
meaning of the duty cycle d as the control input, as well as relationships between
d[k] and d(t).

Given the nature of the switched-mode power converter controlled by a PWM
waveform, it is clear that a physical meaning can be attributed only to d[k]: the con-
verter responds to d[k], not to d(t). Conceptually, the duty cycle is a property of a
switching interval and not of a specific instant in time. Consequently:

The duty ratio is an inherently discrete-time signal, even in analog control.

Nonetheless, d(t) as a continuous-time control signal has been employed in
the context of averaged models and analog control of switched-mode converters.
One interpretation of d(t) is provided by [125]: d(t) can be described as a baseband
continuous-time signal interpolating d[k] at the pulse width modulated switching
events Tk = DTs + kTs,

d(t = Tk = kTs + DTs) = d[k]. (1.86)

More formally, one could intend d(t) as the baseband portion of the PWM output
c(t),

d(ω) � R(ω)c(ω), (1.87)

where R(ω) is the frequency response of the ideal brick-wall filter,

R(ω) =

⎧⎨
⎩ 1, −ωs

2
< ω <

ωs

2
,

0 otherwise.
(1.88)

This interpretation of d(t) highlights an advantage as well as a limitation of the
averaged modeling approach: the converter behavior is studied at frequencies well
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below the Nyquist rate fs/2, where it behaves as if continuously responding to the
low-frequency portion of the PWM spectrum. The difference between d(t) and the
true converter control input d[k] only becomes important in the proximity and above
the Nyquist rate fs/2.

For analog pulse width modulators, it can be shown that d(t) coincides with
u(t) itself apart from a scaling factor equal to 1/Vr [126]. The control signal then
appears unaltered in the baseband of c(t), and the fact that d(t) = u(t)/Vr is in agree-
ment with (1.23). This justifies the common practice in analog modeling to treat d(t)
as a scaled version of the analog control command u(t).

The situation is depicted by the qualitative spectra reported in Fig. 1.27.
The comparison between analog control signal u(t) and the carrier operated by
the comparator produces the sequence d[k] driving the converter. A certain PWM
spectrum c(t) and a certain converter response vs(t) can be associated with d[k].
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Figure 1.27 Qualitative
signal spectra in analog
control.
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Averaged small-signal modeling, on the other hand, focuses on the baseband portion
of c(t) – that is, d(t) – and puts it in relation with the baseband portion of vs(t), that
is, with vs(t).

The assumption that u(t)—and therefore d(t)—is a baseband signal is never
strictly satisfied in practice, as u(t) always includes some amount of switching con-
tent as a result of the switching harmonics not entirely filtered by the sensing path or
the compensator. Differences between u(t) and d(t) arise when such switching fre-
quency content is significant and make the PWM small-signal gain differ from 1/Vr.
One may note that the effect, usually undesired in PWM converters, is intentionally
employed in analog peak current-mode controllers, where adding the compensation
ramp to the modulating signal alters the small-signal gain of the modulator [1].

1.7 SUMMARY OF KEY POINTS

• PWM switched-mode power converters alternate between two or more
subtopologies in a regular manner. In general, a switched-mode power
converter is a time-varying nonlinear system.

• Steady-state analysis of switched-mode power converters is founded upon the
volt-second and charge balance equations. Coupled with the small-ripple or
linear-ripple approximations, averaged steady-state currents and voltages of the
converter can be determined for any given operating point.

• Analysis of converter dynamics is founded upon applying an averaging oper-
ator to all converter waveforms. The resulting model is time-invariant but still
nonlinear. Perturbation and linearization of the averaged model yields a linear
small-signal model, which can be used to obtain all transfer functions relevant
for the control design process. The averaged small-signal modeling framework
formulates the above-mentioned concepts in terms of equivalent circuits that
can be analyzed using conventional circuit analysis techniques. In general, the
averaged models are intended to predict converter dynamics at frequencies well
below the switching frequency.

• State-space averaging is a general formulation for the averaging/linearization
process.

• The duty ratio d(t) used in the continuous-time modeling is intended to repre-
sent the baseband component of the PWM signal c(t). The difference between
such control input and the true cycle-by-cycle duty ratio d[k] can be neglected
in the context of the averaged converter dynamics.



C H A P T E R 2
THE DIGITAL CONTROL LOOP

The objectives of this chapter are to introduce the main blocks in the digital control
loop around a switched-mode power converter and provide an overview of the design
issues the digital scenario brings in from a system-level standpoint. Digital control of
a switched-mode power converter differs from analog control in two aspects:

1. Time Quantization. The controller is a discrete-time system that processes a
sampled version of the analog signal(s) to be controlled or regulated and pro-
duces a discrete-time control output.

2. Amplitude Quantization. Data processing inside the controller occurs digitally,
that is, the signal amplitudes are quantized.

Time quantization affects the small-signal dynamics of the system, introduc-
ing control delays within the feedback loop, which are not found in analog control
loops. Spectral aliasing due to the sampling process also comes into play in deter-
mining the frequency response of the digitally controlled converter. In general, the
averaged small-signal modeling summarized in the previous chapter does not capture
these effects. Given the popularity of the averaged modeling approach, the second
part of this chapter presents several examples of how this approach can be used in
digital design, but it also highlights some of its limitations. These limitations are
removed in the exact modeling approach for digitally controlled converters, referred
to as discrete-time small-signal modeling, which is discussed in Chapter 3.

Amplitude quantization is responsible for nonlinear effects, which may lead
to degradation of static and dynamic regulation performance in digitally controlled
converters. Such effects, together with related design guidelines, are discussed in
Chapters 5 and 6.

The digital control loop is introduced in Section 2.1. Characteristics and mod-
eling of the main blocks in the digital control loop, the analog-to-digital (A/D) con-
version, the digital compensator, and the digital pulse width modulator (DPWM),
are introduced in Sections 2.2, 2.3 and 2.4, respectively. Section 2.5 is devoted to a
discussion of loop delays introduced by the time quantization and the sampling pro-
cesses in the digital controller. Using averaged models in the digital design, together
with limitations of this approach, are discussed in Section 2.6. The key points are
summarized in Section 2.7.

Digital Control of High-Frequency Switched-Mode Power Converters, First Edition.
Luca Corradini, Dragan Maksimović, Paolo Mattavelli, and Regan Zane.
© 2015 The Institute of Electrical and Electronics Engineers, Inc. Published 2015 by John Wiley & Sons, Inc.
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The reader is referred to Appendix A for a brief introduction to discrete-time
systems and Z-Transform.

2.1 CASE STUDY: DIGITAL VOLTAGE-MODE CONTROL

As a case study, consider a digital version of the voltage-mode controlled Buck con-
verter introduced in Section 1.5.1. The control system is illustrated in Fig. 2.1.

Similar to the analog case, the output voltage vo(t) undergoes a preliminary
signal conditioning step, performed in the analog domain, which is modeled by the
transfer function H(s) of the sensing path. The sensed output voltage vs(t) is then
A/D converted into a digital sequence v�

s[k] having a sampling period T and a resolu-
tion determined by the A/D converter. In general, the sampled version of the sensed
signal is denoted as vs[k],

vs[k] � vs(tk), (2.1)

where tk are the sampling instants. Furthermore, whenever necessary, the digitized
version of vs[k] is denoted as v�

s[k].
The most common choice for the sampling period T is

T = Ts , (2.2)

that is, the sampling process is synchronized with respect to the switching process of
the power converter, and the sampling frequency coincides with the converter switch-
ing frequency. Consequently, the sampling instant always occurs at a fixed position
within a switching period.

The control error e[k] between the internal digital reference Vref and the
acquired signal vs is then processed by a digital compensator, which calculates the
digital control command u[k] on a switching cycle basis. Following the calculation
of u[k], a DPWM produces a modulated output c(t) by latching u[k] every Ts

vs [k]Vref

e[k]

u[k]

Digital controller

vo(t)

Vg

Sensing/
analog conditioning

io(t)

vs(t)

Digital
compensator

c(t)

c (t)
Digital PWM

H(s)A/D+−

Figure 2.1 Digital voltage-mode control of a synchronous Buck converter.
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seconds at the beginning of each modulation cycle and generating the output pulse
c(t) the duration of which is proportional to u[k].

2.2 A/D CONVERSION

Quantization performed by the A/D converter on the analog sensed signal vs(t) is
commonly referred to as input quantization. It is assumed that offset voltage and
integral and differential nonlinearities can be neglected and that the effective number
of bits of the converter coincides with its hardware resolution nA/D .

Figure 2.2 shows a block diagram of the A/D converter and the waveforms
illustrating its operation. The process of A/D conversion can be modeled as sampling
of the analog input, followed by amplitude quantization of the acquired sample. Fur-
thermore, regardless of the A/D converter architecture, a conversion delay tA/D is
always present, representing the time between when the analog signal is sampled and
the digital output signal is updated.

2.2.1 Sampling Rate

In a PWM switching converter, the state variables contain a baseband spectrum,
consisting of dc and low-frequency components, as well as high-frequency spectral
components centered around the switching frequency fs and its harmonics, and asso-
ciated with the switching activity of the converter. The prefiltering H(s) by the analog
sensing and conditioning circuitry usually attenuates the high-frequency content of
the signal, but it does not qualitatively change the composition of the signal spectrum.
Regardless of the analog prefiltering, the sensed signals always include switching
content at high frequencies. As a result, a certain degree of spectral aliasing always
occurs, regardless of the sampling rate. As anticipated by (2.2), the most common
choice is to have the sampling rate equal to the switching frequency, a choice that is
motivated by the following considerations.

Observe first that in steady state, the converter signals are strictly periodic with
period Ts. In order to preserve the periodicity in the digital domain and not introduce

(a)

(b)

A/D conversion

vs(t) vs[k]

Sampling

Ts v�
s [k]

Delay
tA/D

vs(t)

v�
s [k − 2] v�

s [k − 1] v�
s [k]

k − 1 k k + 1 t

t

vs[k]

tA/D

Figure 2.2 (a) Block diagram of
the A/D conversion process and
(b) associated waveforms.
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sampling artifacts, the sampling rate is usually constrained to be a multiple of fs.
Such synchronization between pulse width modulation and sampling activity is of
essential importance in digitally controlled power electronics.

Secondly, consider what happens when sampling a converter signal faster than
the converter switching rate. Figure 2.3 illustrates the sampling of an analog signal
vs(t) at fsampling = 3fs. Sampling causes a periodic superposition of the original
spectrum, resulting in a postsampling spectrum which is periodic in frequency with
period 3fs. The Nyquist rate fN , which is equal to one-half of the sampling rate,
represents the frequency above which spectral periodicity begins and is therefore the
largest frequency “visible” to the digital system.

In the case shown, sampling involves superposition of the original spectrum
around both dc and fs. The dc components of vs(t) and vs[k] are different due to
aliasing in the low-frequency range. Furthermore, spectral content around fs in the
sampled signal is the result of spectral aliasing of the switching ripple originally
present in vs(t). Whenever vs(t) is sampled at a rate strictly higher than the

t

t

Complete waveform
vs(t) including ripple

Gate drive c(

(a)

(b)

t)

DC component
of vs(t)

Sampled
waveform vs[k]

DC component
of vs[k]

Ts

f3fs0 2fsfs

f0 3fs2fsfs

Spectrum of vs(t)

Spectrum of vs[k]

fN =
3

2
fs

In-band aliased image

Figure 2.3 Sampling frequency higher than the switching frequency: (a) time-domain
waveforms of the sensed signal before and after sampling and (b) qualitative signal spectra.
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switching frequency, spectral aliasing of the switching ripple produces a frequency
image below the Nyquist rate, which is therefore visible to the digital system. Such
residual high-frequency component in the digital domain requires a filtering action
to be performed in the digital controller. The situation is similar to the necessity
of attenuating switching harmonics in analog compensators by purposely adding
high-frequency poles, as discussed in Section 1.5.1. More details about sampling at a
rate higher than the switching frequency, which is also referred to as multisampling,
can be found in [61, 62].

Next, consider the case fsampling = fs, as shown in Fig. 2.4. Spectral alias-
ing now occurs only around dc, with no images of the original spectrum being cre-
ated below the Nyquist rate as a result of sampling. It is instructive to consider a
steady-state condition. In steady state, spectral aliasing manifests itself as vs(t) being
converted into a constant signal, as illustrated in Fig. 2.5. In other words, switching
harmonics present in the analog signal vs(t) only alias at dc. Dc spectral aliasing
induced by

t

t

Complete waveform
vs(t) including ripple

Gate drive c(

(a)

(b)

t)

DC component
of vs(t)

Sampled
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of vs[k]

Ts

f3fs0 2fsfs

f0 3fs2fsfs

Spectrum of vs(t)

Spectrum of vs[k]

fN

= fs/2

Figure 2.4 Sampling frequency equal to the switching frequency: (a) time-domain
waveforms of the sensed signal before and after sampling and (b) qualitative signal spectra.
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t

T = Ts

vs[k]

DC value of vs(t)

vs(t)

DC value of vs[k]

Figure 2.5 Example of dc
aliasing in voltage sampling.

(2.2) has therefore the inherent advantage of removing switching harmonics from
the feedback signal. It follows that high-frequency poles, which are purposely
introduced in analog compensators in order to attenuate the switching noise,
become unnecessary in digital control, as long as the sampling rate is equal to the
switching rate. It is important to stress that synchronization between sampling and
PWM operation is the common underlying assumption in all the above-mentioned
considerations.

A drawback of (2.2) is, on the other hand, a corruption of the dc regulated
value of the sampled variable vs[k], which in general differs, as anticipated, from the
dc component of vs(t). Figure 2.5 shows an example of such aliasing effect as seen in
the time domain. Whenever the switching ripple of the sensed variable vs(t) is much
smaller than its dc value, the dc error introduced by aliasing can be neglected. Cases
exist, however, where provisions should be undertaken to mitigate dc spectral alias-
ing. An example can be found in digital average current control in dc–dc or dc–ac con-
verters, where it is desired to regulate the average value of the current waveform and
where the current switching ripple may not be small. In such cases, dc spectral alias-
ing may induce an unacceptable regulation error. Depending on the amplitude of the
switching ripple, the aliasing-induced error between iL[k] and IL can be significant.

One commonly adopted solution to the problem of average current sampling is
to employ a symmetrical PWM modulation and allocate the sampling instants either at
the peak or at the valley point of the PWM carrier, as illustrated in Fig. 2.6. Thanks to
the triangular shape of the current and the choice of the sampling instants, the average
current can be sampled with negligible aliasing error regardless of the duty cycle
and therefore regardless of the converter operating point. Note, however, that this
approach relies on the triangular waveshape of the sampled signal, which is typical
for inductor current in converters operating in continuous conduction mode (CCM).
This is not the case, for instance, when sampling the inductor current in converters
operating in discontinuous conduction mode (DCM).

2.2.2 Amplitude Quantization

The internal quantizer of the A/D converter operates over an analog input range
[0, VFS ] with a resolution of nA/D bits. The corresponding quantization step in vs[k] is

q(A/D)
vs

� VFS

2nA/D
. (2.3)
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Figure 2.6 Commonly adopted
PWM and sampling strategy for
digital average current-mode
control.
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Figure 2.7 A/D converter
quantization characteristic.

The quantized range, often referred to as the linear range of the A/D con-
verter, is thus subdivided into 2nA/D voltage intervals Bi, i = 0 . . . 2nA/D − 1, which
are commonly called bins. Each bin of the A/D converter is q

(A/D)
vs volts wide. The

quantization characteristic QA/D [ . ] of the A/D converter is illustrated in Fig. 2.7. In
the linear range, the digital output v�

s[k] of the A/D converter is given by

v�
s[k] � QA/D [vs[k]] = q(A/D)

vs
ṽs[k], ṽs[k] ∈ Z, (2.4)

where ṽs[k] is an integer that uniquely identifies the bin where vs[k] resides. The
digital output of the A/D converter is a binary-coded version of ṽs[k]. The specific
code used may be 2’s complement, offset binary, and so on. Outside the linear range,
that is, when the analog input either exceeds VFS or lies below 0, the A/D con-
verter is saturated and its digital output typically remains at the highest or the lowest
value.
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The digital setpoint Vref of the controller is expressed with the same resolution
nA/D and the full-scale range VFS of the A/D converter,

Vref = q(A/D)
vs

Ṽref , Ṽref ∈ Z, (2.5)

where the integer Ṽref identifies the zero-error bin, that is, the quantization interval
Bref to which vs[k] should be regulated.

2.3 THE DIGITAL COMPENSATOR

The compensator is a clocked digital logic that calculates the control command u[k]
based on the regulation error e[k]. As shown in Fig. 2.8, the compensator clocked on
a sampling cycle basis produces the control command after a certain computational
delay tcalc . For the moment, an idealized, instantaneous execution of the control calcu-
lations is assumed, while Section 2.5 presents a more general discussion about control
delays.

A linear and time-invariant compensation law is described by a difference
equation

u[k] = −a1u[k − 1] − a2u[k − 2] − . . . − aNu[k − N ]

+ b0e[k] + b1e[k − 1] + . . . + bMe[k − M ]. (2.6)

An important case of (2.6) is that of proportional-integral-derivative (PID) digital
compensators, which represent the discrete-time counterpart of the popular PID
analog regulators [127]. One can derive the general discrete-time PID equations
by discretization of the differential equations of a continuous-time PID. Consider
the block diagram in Fig. 2.9, which illustrates a continuous-time PID compensator
in its so-called parallel realization. The parallel PID structure is often referred to
as noninteracting because the proportional, integral, and derivative gains can be

vs(t)

v�
s [k − 2] v�

s [k − 1] v�
s [k]

k − 1 k k + 1 t

t

vs[k]

tA/D

u[k − 2] u[k − 1] u[k]

t

t

Compensator
clock

tcalc

Figure 2.8 Timing diagram of
the compensator operation.
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e(t)

ud(t)

up(t)

ui(t)
Ki

Kp

Kd
d

dt

+

Figure 2.9 Block diagram of a continuous-time PID compensator in the parallel
(noninteracting) form.

adjusted independently. Equations describing the analog PID compensator are

up(t) = Kpe(t),

ui(t) = Ki

∫
e(τ) dτ,

ud(t) = Kd

de(t)
dt

,

u(t) = up(t) + ui(t) + ud(t),

(2.7)

or, in the Laplace domain,

GPID(s) � û(s)
ê(s)

= Kp︸︷︷︸
Proportional Term

+
Ki

s︸︷︷︸
Integral Term

+ sKd︸︷︷︸
Derivative Term

. (2.8)

For simplicity, (2.8) does not include any high-frequency poles or a filtering
action usually embedded into the derivative term of an analog PID compensator.

Several discretization techniques are available to convert a continuous-time
system into a discrete-time system having similar frequency response characteris-
tics. One of the simplest is the backward Euler method, or backward rectangular
rule, which is based on a rectangular approximation of the continuous-time integral
operator. As shown in Fig. 2.10, the integral over one sampling step is approximated
as ∫ kTs

(k−1)Ts

x(τ) dτ ≈ Tsx(kTs). (2.9)

In the Z-transform domain, the backward Euler discretization can be inter-
preted as an s-to-z mapping rule defined by the substitution

s → 1 − z−1

Ts

. (2.10)
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x(t)

(k − 1)Ts kTs (k + 1)Ts t
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x(kTs)

Figure 2.10 Backward Euler
approximation.

Application of the backward Euler rule to (2.7) yields the equations of a
discrete-time PID in additive form

up[k] = Kpe[k],

ui[k] = ui[k − 1] + KiTse[k],

ud[k] =
Kd

Ts

(e[k] − e[k − 1]),

u[k] = up[k] + ui[k] + ud[k].

(2.11)

In the z-domain,

GPID(z) � û(z)
ê(z)

= Kp︸︷︷︸
Proportional Term

+
TsKi

1 − z−1︸ ︷︷ ︸
Integral Term

+
Kd

Ts

(
1 − z−1)

︸ ︷︷ ︸
Derivative Term

, (2.12)

which is illustrated in Fig. 2.11 in the form of an equivalent block diagram.
Another frequently used discretization rule is known as Tustin approach or

trapezoidal rule. This approach adopts a more accurate discrete representation of

u[k]

e[k]

ud[k]

up[k]

ui[k]
+

+

+−

z−1

z−1

TsKi

Kp

Kd

Ts

Figure 2.11 Block diagram of a discrete-time PID compensator obtained via backward
Euler discretization of a continuous-time PID.
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Figure 2.12 Tustin
approximation.

the integration operation by approximating the integral over the sampling step with
the trapezoidal approximation of the integrand,∫ kTs

(k−1)Ts

x(τ) dτ ≈ Ts

2
(x(kTs) + x((k − 1)Ts)), (2.13)

as illustrated in Fig. 2.12. With such approximation, the digital PID equations in the
time domain become

up[k] = Kpe[k],

ui[k] =
KiTs

2
(e[k] + e[k − 1]) + ui[k − 1],

ud[k] =
2Kd

Ts

(e[k] − e[k − 1]) − ud[k − 1],

u[k] = up[k] + ui[k] + ud[k].

(2.14)

The Tustin discretization can be interpreted as a s-to-z mapping rule defined
by the substitution

s → 2
Ts

1 − z−1

1 + z−1 . (2.15)

Application of (2.13) to (2.7) yields

GPID(z) � û(z)
ê(z)

= Kp︸︷︷︸
Proportional Term

+Ki

Ts

2
1 + z−1

1 − z−1︸ ︷︷ ︸
Integral Term

+Kd

2
Ts

1 − z−1

1 + z−1︸ ︷︷ ︸
Derivative Term

. (2.16)

A block diagram corresponding to this realization is illustrated in Fig. 2.13.
Figure 2.14 compares the Bode plots of the continuous-time PID compensator

designed in Chapter 1 with the Bode plots of its Tustin discretization. The frequency
responses of the two compensators essentially coincide throughout most of the
frequency range and start departing from one another only in close vicinity of the
Nyquist rate of the system, which is fs/2 = 500 kHz in this example.
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Figure 2.13 Block diagram of a discrete-time PID compensator obtained via Tustin
discretization of a continuous-time PID.
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Figure 2.15 (a) Block diagram
of a counter-based digital pulse
width modulator and (b)
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2.4 DIGITAL PULSE WIDTH MODULATION

The role of the DPWM is to acquire the control command u[k] on a sampling cycle
basis and generate a train of pulses having duty cycle d[k] proportional to u[k].

Figure 2.15 shows a block diagram of the standard counter-based DPWM
architecture. This architecture is a digital realization of a conventional analog PWM.
A modulo-Nr counter, which is clocked at frequency fclk = 1/Tclk , generates the
PWM carrier r[nTclk ], which resembles a periodic staircase with period Ts. Every
switching period consists of Nr clock intervals,

Ts = NrTclk . (2.17)

At the beginning of every switching cycle, for example, when the counter output
is zero, the input control command u[k] is latched into the DPWM input register and
held constant throughout the rest of the interval. During this time, the content of the
register (signal uh[k] in Fig. 2.15) is compared with r[nTclk ] on a clock cycle basis,
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and a pulse is generated with duty cycle

d[k] =
u[k]
Nr

. (2.18)

Regardless of the implementation, a DPWM can only produce a finite set of
duty cycles. By time resolution of a DPWM, one commonly refers to the smallest
variation of the pulse duration the modulator is capable of. This important quantity
is denoted as

ΔtDPWM . (2.19)

The modulator duty cycle resolution qD is, accordingly, the smallest duty cycle vari-
ation

qD � ΔtDPWM

Ts

. (2.20)

Both ΔtDPWM and qD quantify the coarseness of the DPWM as an actuator.
When Nr is a power of two, the resolution of a modulator can be conveniently

expressed by an equivalent number of bits nDPWM , which is related to ΔtDPWM and
qD by

nDPWM � log2

(
Ts

ΔtDPWM

)
= log2

(
1

qD

)
. (2.21)

The value of and the expression for ΔtDPWM depends on the specific DPWM
architecture. For the counter-based DPWM, the time resolution clearly coincides with
the clock period,

ΔtDPWM = Tclk , (2.22)

and consequently

qD =
Tclk

Ts

=
1

Nr

. (2.23)

For instance, a 12-bit DPWM – Nr = 4096 – operating at fs = 200 kHz has
a time resolution ΔtDPWM = 5 μs/4096 ≈ 1.2 ns and a duty cycle resolution qD ≈
0.024%.

Quantization of the duty cycle due to the DPWM granularity can be represented
by a suitable quantization characteristic QD[ . ],

D� = QD[D], (2.24)

where the desired duty cycle D = U/Nr depends on the control command U and the
carrier amplitude Nr and where D� is the duty cycle generated by the DPWM.

The duty cycle quantization characteristic QD[ . ] depends on the DPWM
implementation. An example is illustrated in Fig. 2.16, which reports a possible
quantization characteristic of a 3-bit DPWM—an intentionally low resolution
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Figure 2.16 Duty cycle quantization
operated by the DPWM.

chosen for ease of representation. This DPWM is capable of representing eight duty
cycle levels ranging from 0 to 7/8 with a resolution qD = 1/8 = 12.5%.

2.5 LOOP DELAYS

The most important difference between the analog and digital control loops is the
presence of delays of various nature, which affect frequency response and need to be
modeled and accounted for in the design of digital control loops.

2.5.1 Control Delays

As seen in the previous sections, regardless of the specific A/D and compensator
structures, the digital control command u[k] is available at the compensator output
after a certain delay with respect to the sampling instant. By control delay tcntrl , one
refers to the time interval separating the sampling event from the instant when the
digital modulator latches the corresponding control command u[k] calculated by the
digital compensator.

The origin and the value of tcntrl depend on the digital controller implemen-
tation. A distinction can be made between hardware-based digital controllers and
software-based controllers:

• In hardware-based controllers implemented as custom-integrated circuits or
in field programmable gate arrays (FPGAs), the digital compensator is cus-
tom designed into a hardwired combination of digital arithmetic blocks and
registers. Fast, application-optimized A/D converters are employed.
In such implementations, tcntrl is determined by the A/D conversion time fol-
lowed by the propagation time of the combinational portion of the compensator
network, and it can easily be reduced to a small fraction of the switching period
even when the switching frequency is in the order of hundreds of kHz or higher.
A control timing diagram typical for hardware-based controllers is shown in
Fig. 2.17. The fast calculation time offered by the hardware implementation
allows the control command to be delivered to the digital pulse width modulator
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Figure 2.17 Typical timing
diagram of a hardware-based
controller.

within the same switching interval, so that

d[k] =
u[k]
Nr

(2.25)

as depicted in Fig. 2.17.

• In a software-based controller, the control law is software-programmed and
executed by the central processing unit (CPU) of a microcontroller or a digital
signal processor (DSP). In this case, the control delay tcntrl corresponds to the
A/D conversion time followed by the execution time of the control algorithm by
the CPU, which can be comparable to the switching period. If the delay equals
a full modulation cycle,

d[k] =
u[k − 1]

Nr

, (2.26)

which corresponds to the timing diagram of Fig. 2.18.

2.5.2 Modulation Delay

In addition to the control delay, the modulation delay plays an important role in digital
control modeling and design. By modulation delay, one refers to a small-signal delay
introduced by the digital modulator as a consequence of the sampled nature of the
modulating signal.
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To better understand the origin of the modulation delay, consider Fig. 2.17 and
2.18: both diagrams differ substantially from Fig. 1.7 in that a nonzero time delay
exists between the latching of the control command u[k] operated by the modula-
tor and the generation of the corresponding modulated edge. Such delay, denoted as
tDPWM in both Figs. 2.17 and 2.18, is inherently associated with the sampled nature
of the modulating signal. The modulators that sample the modulating signal before
comparing it to the carrier are referred to as uniformly sampled pulse width modula-
tors (USPWMs). Digital pulse width modulators discussed in Section 2.4 all belong
to this class. On the other hand, naturally sampled pulse width modulators commonly
employed in analog control and discussed in Chapter 1, which perform a continuous
comparison between u(t) and r(t), do not exhibit modulation delay [126].

The small-signal frequency response of an USPWM can be written in the form

GPWM (jω) = APWM (jω)e−jωtDPWM , (2.27)

where APWM is a real positive function of the angular frequency ω, whereas tDPWM
represents the equivalent small-signal delay introduced by the modulator. Table 2.1
reports the main waveforms and expressions of GPWM (jω) for the trailing-edge,
leading-edge, and symmetrical (triangle-wave) modulations. In general, APWM is
equal or close to 1/Nr over a wide range of frequencies, so that in most cases one
can assume APWM ≈ 1/Nr with negligible loss in modeling accuracy. On the other
hand, tDPWM depends, in general, on the type of modulation and the steady-state
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TABLE 2.1 Small-Signal Frequency Responses of Uniformly Sampled Pulse Width
Modulators

Modulation Type Frequency Response

r(t)

t

uh[k]

t

c(t)

Ts

d[k]Ts

Nr

Trailing-edge

GPWM ,TE (jω) =
e−jωDTs

Nr

r(t)

t

t

c(t)

Ts

d[k]Ts

Nr

uh[k]

Leading-edge

GPWM ,LE (jω) =
e−jω(1−D)Ts

Nr

r(t)

t

uh[k]

t

c(t)

Ts

d[k]Ts

Nr

Symmetrical

GPWM ,Sym(jω) =

=
cos (ωDTs/2)

Nr

e−jω Ts
2

≈ e−jω Ts
2

Nr
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duty cycle D, with the notable exception of the symmetrical modulation, in which
tDPWM = Ts/2 independent of the duty cycle.

With a detailed derivation given in Appendix C, the result (2.27) can be arrived
at through the following argument. Referring to Fig. 2.19, consider a trailing-edge
USPWM driven by a constant command U superimposed to a Kronecker pulse û[k] =
û[0]δ[k] of amplitude û[0] applied at k = 0. The modulator output c(t) consists of a
steady-state PWM signal cs(t) having duty cycle D = U/Nr, plus a perturbation ĉ(t)
due to û[k]. Such perturbation increases the duty cycle to D + d̂ during the mod-
ulation period immediately following the application of the Kronecker pulse, with
d̂ = û[0]/Nr. Laplace transform of the output perturbation is

ĉ(s) �
∫ +∞

0
ĉ(τ)e−sτdτ

=
∫ (D+d̂)Ts

DTs

e−sτdτ

=
1 − e−sd̂Ts

s
e−sDTs . (2.28)

t

Ts

t

U

r(t)

t

U + û[0]

cs(t)
c(t)

t

ĉ(t)

d̂Ts

t

U
û[0]

U + û[0]

DTs

k = 0 k = 1

ĉ(t) ≈ Ts

Nr
û[0]δ(t − DTs)

DTs

Nr

Figure 2.19 Dirac approximation
of the uniformly sampled pulse
width modulator output.
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Given the small-signal assumption for û[0], a first-order approximation in d̂ yields

ĉ(s) ≈ e−sDTs d̂Ts = e−sDTs
Ts

Nr

û[0], (2.29)

which in time domain corresponds to

ĉ(t) ≈ Ts

Nr

û[0]δ(t − DTs). (2.30)

In other words, the USPWM response to the input Kronecker pulse is a Dirac delta
function delayed by DTs and scaled by Ts/Nr. From (2.30), one recognizes that
tDPWM = DTs.

For an arbitrary small-signal input perturbation û[k], the USPWM output is a
modulated train of delayed Dirac delta pulses,

û(t) ≈ Ts

Nr

+∞∑
k=−∞

û[k]δ(t − kTs − DTs). (2.31)

The modulation delay can be a significant fraction of the total loop delay. In a
hardware-based controller implementation, for instance, where the control delay tcntrl
can be reduced to a small fraction of the switching interval, tDPWM easily becomes
the major limiting factor to the achievable control bandwidth.

2.5.3 Total Loop Delay

The total loop delay is the sum of the control and modulation delays,

td � tcntrl + tDPWM . (2.32)

As suggested in both Figs. 2.17 and 2.18, td can be directly determined by inspection
from the timing diagram as the time interval separating the sampling event, when the
A/D converter acquires the analog sample, to the modulation event, which is defined
as the steady-state position of the modulated edge of the PWM signal cs(t). In a
trailing-edge modulation, for example, the modulation event coincides with the gen-
eration of the PWM falling edge. In leading-edge modulation, on the other hand,
the modulated edge is the rising edge, which occurs (1 − D)Ts seconds after the
falling edge. Care must be taken in the case of symmetrical modulation, in which both
edges of cs(t) are modulated. In this case, from Table 2.1, one has tDPWM = Ts/2.
In this case, the “equivalent” modulation event occurs Ts/2 seconds after the begin-
ning of the switching interval, and the modulator delay does not depend on the duty
cycle.
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2.6 USE OF AVERAGED MODELS IN DIGITAL
CONTROL DESIGN

As summarized in Chapter 1, averaged small-signal modeling has been historically
developed in close relationship with analog control design. Given the body of
knowledge available, along with successful experiences with the averaging modeling
approach in power electronics practice, it is tempting to apply the same models
in the design of digital control loops. The objectives of this section are to discuss
approximations involved and highlight fundamental limitations of this approach,
based on the following observations:

• As discussed in the previous section, unlike their naturally sampled counter-
parts commonly found in analog controllers, uniformly sampled pulse width
modulators introduce additional small-signal dynamics in the control loop in
the form of a modulation delay. Embedding the delay effects into the averaged
modeling framework is possible but only in an approximate manner.

• Neglecting high-frequency converter dynamics, as is implied by averaging,
does not account for aliasing effects which occur as a result of the sampling
operation and which can manifest themselves even in the low-frequency range.

Using averaged continuous-time models, both of the above-mentioned short-
comings can be addressed in an approximate manner only in cases when it is possible
to assume that the digital controller samples, at least approximately, the average value
of the sensed signal, so that aliasing effects can be neglected. Otherwise, results can
be unpredictable. The digital control design must then be based on the discrete-time
modeling approach introduced in Chapter 3.

In this section, the limitations of the averaged small-signal modeling as related
to digital control loop design are first exemplified by a design example. Possible
modifications to the averaged small-signal models are then discussed, along with the
conditions under which these approximate modeling and control design approaches
can be applied.

2.6.1 Limitations of Averaged Modeling

To exemplify the modeling inaccuracies of the averaged small-signal modeling
framework when it comes to digital control dynamics, consider digital voltage-mode
control of the Buck converter depicted in Fig. 2.1, assuming the same parameters
as in the analog control example introduced in Section 1.5.1 and summarized in
Table 1.2. Assume that the digital controller employs a trailing-edge DPWM and
that the control timing diagram resembles the one shown in Fig. 2.17. For better
comparison with analog control, also assume that Nr = 1 and neglect amplitude
quantization. The control delay tcntrl is considered a parameter, and various scenarios
are examined.

Suppose that modeling of the power converter is carried out according to the
averaging method, as described in Section 1.3. On the basis of the continuous-time
averaged model of the converter, a continuous-time compensator can be designed
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exactly as outlined in Section 1.5.1, with no modifications. The end result of this
procedure is the s-domain expression for the compensator transfer function Gc(s),
reproduced here,

Gc(s) =
(
1 +

ωl

s

)
︸ ︷︷ ︸

PI

. GPD0

1 +
s

ωz

1 +
s

ωp︸ ︷︷ ︸
PD

. 1

1 +
s

ωp2︸ ︷︷ ︸
HF Pole

, (2.33)

with
ωl = 2π . (8 kHz) ,

ωz = 2π . (40 kHz) ,

ωp = 2π . (250 kHz) ,

ωp2
= 2π . (1 MHz) ,

GPD0 = 6.2.

(2.34)

The transfer function of the digital compensator can be obtained, as discussed
in Section 2.3, by discretization of Gc(s). A comparison between the frequency
responses of Gc(s) and its Tustin discretization has already been shown in Fig. 2.14.
The discretization step completes the system-level design of the compensation.

Summarizing the above-mentioned procedure:

• The converter is modeled according to the standard averaging modeling
approach. The result of this step is a Laplace-domain expression for the
uncompensated loop gain Tu(s).

• A continuous-time compensator is designed based on conventional analog tech-
niques, yielding an s-domain expression for the compensator transfer function
Gc(s).

• The transfer function of the digital compensator Gc(z) is obtained by Tustin
discretization of Gc(s).

Figure 2.20 compares the steady-state behavior of the analog-controlled and the
digital-controlled systems for tcntrl = 400 ns. While the analog controller regulates
the dc value Vo of vo(t) to Vref = 1.8 V, it can be observed that the digital controller
regulates the sampled waveform. This is an example of the dc aliasing effect induced
by the sampling operation and anticipated in Section 2.2.1.

Consider next the closed-loop responses to various kinds of disturbances.
Figure 2.21 reports responses for a 1.79 to 1.8 V step variation of Vref . A clear
difference between the two cases can be appreciated in terms of both overshoot and
settling time. The same considerations hold for the 2.5 to 5 A step load response
depicted in Fig. 2.22. As the discrete-time and continuous-time compensators have
essentially the same frequency response—see Fig. 2.14—the observed differences
in the closed-loop behavior of the system must reside in the plant, that is, in
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Figure 2.20 Comparison between analog and digital control: steady-state output voltage
waveform.
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Figure 2.21 Comparison between analog and digital control: 1.79 V→1.8 V step-reference
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Figure 2.22 Comparison between analog and digital control: 2.5 A→5 A step-load
responses.
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Figure 2.23 Effect of the control delay: 1.79 V→1.8 V step reference responses.

the modulator/power converter system. As anticipated, the unmodeled dynamics
concerns the total loop delay td present in the digital control loop. Such delay
contributes an additional phase lag, which ultimately results in a much reduced
phase margin, which in turn corresponds to more significant overshoots and ringing
in time-domain responses.

It is of interest to further examine the effects of td = tcntrl + tDPWM on the
designed control system. One expects both tcntrl and tDPWM to affect the system phase
margin. Figure 2.23 compares three distinct step reference responses correspond-
ing to tcntrl = 0, 400, and 600 ns respectively. The effect of increasing tcntrl , and
therefore td, clearly goes in the direction of decreasing the system stability margin.
Another comparison, even more effective in highlighting the differences between the
analog and digital control dynamics, is illustrated in Fig. 2.24 and refers to a differ-
ence in tDPWM rather than in tcntrl . Suppose the control setpoint is Vref = 3.3 V rather
than 1.8 V. The steady-state duty cycle changes then from D = 0.36 to D = 0.66.
In the framework of averaged modeling, such duty cycle change would not affect
the small-signal dynamics of the Buck converter. However, in the digital controller,
a change in the steady-state operating point produces a different modulation delay
tDPWM . From Table 2.1, one has tDPWM = DTs and therefore the modulation delay
increases proportionally with steady-state duty cycle D. The additional delay trans-
lates, as seen in Fig. 2.24, into a significantly different closed-loop response—a much
less damped response around Vref = 3.3 V than around Vref = 1.8 V.

2.6.2 Averaged Modeling of a Digitally Controlled Converter

The previous example illustrates some of the pitfalls of failing to account for the loop
delay in shaping the compensator transfer function. It is appropriate to ask, then,
whether simply embedding the loop delay in the averaged modeling framework can
mitigate the problem. The answer is affirmative only under certain conditions, which
are now discussed.

Following the considerations developed in Chapter 1, the averaged small-signal
dynamics of a converter is always determined by the baseband portion d̂(t) of the
PWM signal c(t), regardless of how the PWM signal is generated—by an analog or
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Figure 2.24 Effect of the operating point on the modulation delay: comparison between (a)
the 1.79 V→1.8 V and (b) the 3.29 V→3.3 V step-reference responses.

a digital controller. As discussed in Section 2.5, the digital nature of the control is
responsible for the total loop delay td, which separates the sampling event from the
modulated edge of c(t), that is, from the actual application of the modulated signal
to the converter. This motivates the definition of an effective uncompensated loop
gain where the averaged small-signal dynamics is combined with the response cor-
responding to the total loop delay,

T †
u(s) � Tu(s)e−std . (2.35)

To take the delay into account, one may then proceed to design a compensator
based on T †

u(s), instead of Tu(s). The definition (2.35), however, is only useful for
design purposes to the extent that it models the actual dynamics seen by the digital
compensator. Consider Fig. 2.25. The digital compensator responds to the sampled
signal vs[k]. In general, the baseband content of vs[k] is not equal to the baseband
component of vs(t) because of aliasing effects. In other words, the digital com-
pensator responds to dynamics not given by T †

u(s) but rather represented by the
discrete-time model developed in Chapter 3. Only in cases when the sampled signal
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Figure 2.25 Qualitative
spectra of (top) vs(t) and
vs[k], (middle) the averaging
operation, and (bottom) the
baseband portions of vs(t) and
vs[k].

can be assumed to closely follow the averaged, sampled waveform,

vs[k] ≈ vs(tk) , (2.36)

the baseband contents of vs(t) and vs[k] are approximately the same, and the dig-
ital compensator behaves as if it were sampling and controlling the system rep-
resented by the averaged converter model. Condition (2.36) is here referred to as
small-aliasing approximation. In general, validity of the small-aliasing approxima-
tion should be examined case by case. Two scenarios of practical importance in which
the small-aliasing approximation is applicable are as follows:

1. Control of a well-filtered converter state variable, such as the output voltage. In
this case, the sampled dynamics is dominated by the dynamics of the averaged
waveform, with negligible ripple contributions.

2. The controller is intentionally sampling a waveform at an instant when the
ripple component is zero. As an example, this is the case when an inductor
current is sampled using symmetrical modulation to achieve average current
control, as shown in Fig. 2.6. In this case, the peak-to-peak amplitude of the
ripple component can be large, but the small-aliasing approximation is still
valid.

In those situations where (2.36) holds, the design procedure can follow the flow
described in the previous subsection, with the only exception that T †

u(s) is taken as
the uncompensated loop gain rather than Tu(s).
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Figure 2.26 Comparison between conventional and effective small-signal loop dynamics.

In the previously discussed example, which is a case when the well-filtered
voltage is sampled and regulated, the effective loop dynamics can be described by

T †(s) � Gc(s)T
†
u(s) = Gc(s)Tu(s)e−std . (2.37)

Figure 2.26 compares the effective loop gain T †(s) with the loop gain T (s) predicted
by conventional averaged small-signal modeling and already shown in Fig. 1.17.
Furthermore, both T †(s) and T (s) are compared with the system loop gain obtained
by numerical simulation. The effect of the additional phase lag due to the loop
delay td (td = 600 ns in this example) is well described by the effective loop
gain T †(s).

A more in-depth discussion regarding the level of approximation introduced by
T †

u(s) will be undertaken in Chapter 3, with the aid of numerical examples.
The above-mentioned discussion suggests that the averaging approach is not

always the most suitable tool for modeling and designing digitally controlled power
converters. Chapter 3 presents a different modeling approach, known in the litera-
ture as discrete-time modeling, which correctly accounts for all of the effects high-
lighted in this section, and is well suited for the design of digital control loops in all
cases.
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2.7 SUMMARY OF KEY POINTS

• Main elements of a digital control loop of a power converter are the A/D
converter, the digital compensator, and the digital pulse width modulator.
The controller sampling frequency is synchronized to the converter switching
frequency. Having the sampling frequency equal to the converter switching
frequency results in less severe and more controllable aliasing effects.

• Each of the digital controller building blocks introduces a delay in the control
loop, which must be accounted for at the design stage.

• Contrary to naturally sampled PWM typical for analog controllers, uniformly
sampled PWM contributes to the overall loop delay. Such modulation-related
delay depends on the PWM carrier and, in general, on the converter operating
point.

• Conventional continuous-time averaged small-signal models can be aug-
mented to account for the loop delay only in an approximated manner. Under
the small-aliasing approximation, that is, when the sampled signal closely
follows the averaged value of the sensed waveform, the total loop delay can be
described by attributing a transport delay to the uncompensated s-domain loop
gain. In general, however, this modeling approach is only an approximation.



C H A P T E R 3
DISCRETE-TIME MODELING

Recent advances in digital control of high-frequency switched-mode power
converters have renewed the interest in discrete-time modeling techniques as more
natural and more accurate representations of the converter dynamics when controlled
digitally [36, 125, 128–133]. Discrete-time modeling aims at describing the dynam-
ics of the sampled converter waveforms, with no averaging step involved in the
process.

It is interesting, from a historical standpoint, that sampled-data modeling
had been recognized as an inherently accurate way of describing the linearized
switched-mode power converter dynamics even before averaged small-signal
modeling gained popularity [125, 128]. More recent works have formulated the
discrete-time modeling in the context of digital control, embedding in the theory
the important aspect of modulation delay introduced in Section 2.5.2 [36, 131],
which assumes critical importance when designing for fast, wide-bandwidth control
loops.

This chapter introduces the process of discrete-time modeling of dc–dc con-
verters not only from a theoretical perspective but also from a practical standpoint.
Section 3.1 lays the theoretical foundations of the discrete-time modeling technique.
Section 3.2 provides a number of modeling examples and discusses the most inter-
esting features of the discrete-time dynamics, some of which cannot be predicted
well using averaged modeling techniques. As opposed to continuous-time averaged
models, discrete-time analysis and the resulting mathematical models do not easily
lead to design-oriented equivalent circuit models. In various examples, systematic
Matlab® coding is instead presented as a fast and effective way to address deriva-
tions of discrete-time models and facilitate rapid evaluation of a converter’s z-domain
control-to-output transfer functions.

Section 3.3 deals with an important class of converters where the switching
event does not alter their topology—a notable example being the Buck converter.
For these converters, the exact discrete-time model can be obtained via discretiza-
tion of the averaged small-signal model. Existence of such direct link between
s-domain and z-domain models greatly simplifies the math and justifies a dedicated
discussion.

Digital Control of High-Frequency Switched-Mode Power Converters, First Edition.
Luca Corradini, Dragan Maksimović, Paolo Mattavelli, and Regan Zane.
© 2015 The Institute of Electrical and Electronics Engineers, Inc. Published 2015 by John Wiley & Sons, Inc.
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3.1 DISCRETE-TIME SMALL-SIGNAL MODELING

Consider the converter operation as alternating between two topological states S0 and
S1, each described by a linear set of state-space equations

dx

dt
= Acx(t) + Bcv(t),

y(t) = Ccx(t) + Ecv(t),
(3.1)

where c ∈ {0, 1} is the PWM signal that denotes the topological state, while x, v,
and y represent the state, input, and output vectors respectively. With a focus on the
control-to-output dynamics, the input vector is assumed constant from here on,

v(t) = V . (3.2)

The basic idea behind discrete-time small-signal modeling is quite
simple—perhaps simpler than the concept behind averaged modeling. The approach
can be thought of as a three-step process:

1. One first expresses the sampled converter state vector x at instant k + 1 in terms
of the state vector, input vector v, and control input u at instant k. In doing so,
a nonlinear state equation is usually obtained,

x[k + 1] = f(x[k],V , u[k]), (3.3)

where f is a nonlinear vector function.

2. Secondly, the converter operating point Q is determined by solving
the above-mentioned equation for a constant sampled state vector
x[k + 1] = x[k] = X and a constant control input u[k] = U ,

X = f(X,V , U). (3.4)

The converter operating point Q is then defined as

Q � (X,V , U). (3.5)

3. The nonlinear state equation is successively perturbed and linearized in the
neighborhood of Q, yielding the small-signal state-space description of the
sampled dynamics,

x̂[k + 1] = Φx̂[k] + γû[k],

ŷ[k] = δx̂[k],
(3.6)
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where
x̂[k] � x[k] − X,

û[k] � u[k] − U,

ŷ[k] � y[k] − Y

(3.7)

are the small-signal components of the sampled state vector, control command,
and output vector, relative to their dc components X , U , and Y , respectively.
Matrices Φ and γ represent the small-signal state matrix and the small-signal
control-to-state matrix, respectively,1

Φ � ∂f

∂x

∣∣∣∣
Q

,

γ � ∂f

∂u

∣∣∣∣
Q

.

(3.8)

Matrix δ, on the other hand, represents the converter output matrix pertaining
to the subtopology in which sampling occurs,

δ �
{

C1 If sampling occurs during subtopology S1,
C0 If sampling occurs during subtopology S0.

(3.9)

Notice also that matrices Ec do not enter into the control-to-output small-signal
model.

In the z-domain, (3.6) becomes

x̂(z) = (zI − Φ)−1 γû(z),

ŷ(z) = δx̂(z),
(3.10)

1Recall that by derivative of a vector function f with respect to its arguments x, one refers to the matrix
whose columns are the derivatives of f with respect to the successive components of x,

∂f

∂x
�

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂f1
∂x1

∂f1
∂x2

. . .
∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

. . .
∂f2
∂xn

. . . . . . . . . . . .

∂fn

∂x1

∂fn

∂x2
. . .

∂fn

∂xn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

also referred to as the Jacobian of f with respect to x.
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and in the z-domain the small-signal control-to-output transfer matrix W (z) is

W (z) � ŷ(z)
û(z)

= δ (zI − Φ)−1 γ . (3.11)

For example, defining the output vector in terms of the inductor current and the
output voltage as y = [iL vo]

T , W (z) becomes

W (z) =

⎡
⎢⎢⎢⎢⎣

Giu(z) � îL(z)
û(z)

Gvu(z) � v̂o(z)
û(z)

⎤
⎥⎥⎥⎥⎦ . (3.12)

Transfer matrix W (z) represents the end result of the discrete-time modeling
approach and the starting point for the compensator design.

Before engaging in a study of the discrete-time modeling procedure in its gen-
eral formulation, it is instructive to focus on a simple, yet meaningful example. The
goal is to unravel the basic ideas of the approach without being distracted by mathe-
matical complexity.

3.1.1 A Preliminary Example: A Switched Inductor

Consider the circuit illustrated in Fig. 3.1(a) with time-domain waveforms sketched
in Fig. 3.1(b).

A resistor R and an inductor L connected in series are driven by two pulse width
modulated voltage sources VA and VB . During the kth switching cycle, voltage across
RL equals

vRL(t) = c(t)VA − c′(t)VB =
{

VA, 0 < t < d[k]Ts,
−VB , d[k]Ts < t < Ts.

(3.13)

Assume that a trailing-edge modulator is employed, so that the falling edge is
the only modulated edge of the PWM signal c(t). Referring to Fig. 3.1(b), the con-
verter periodic steady-state trajectory iL,s(t) is a result of the steady-state PWM com-
mand cs(t) with duty cycle D = U/Nr. The small-signal component îL(t) results
from the PWM perturbation ĉ(t) = c(t) − cs(t), where ĉ(t) consists of narrow pulses
the width of which is determined by the cycle-by-cycle control perturbation û[k] =
u[k] − U = (d[k] − D)Nr. Assume, as suggested in Fig. 3.1(b), that current iL(t)
flowing through the inductor is sampled some time before the beginning of every
switching interval. The objective is to describe the small-signal dynamics of the sam-
pled current iL[k].

Start by writing the continuous-time differential equation governing the behav-
ior of the circuit,

diL
dt

= −R

L
iL(t) +

1
L

vRL(t). (3.14)
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ĉ(t)
Figure 3.1 (a) The switched
inductor and (b) waveforms
associated with its discrete-time
model derivation.

This simple first-order differential equation, in which vRL(t) acts as the input, can be
directly solved for a given initial condition iL(t0),

iL(t) = e−ωptiL(t0) +
∫ t

t0

vRL(τ)g(t − τ) dτ, (3.15)

where
ωp � R

L
(3.16)

and where
g(t) =

1
L

e−ωpt, t ≥ 0 (3.17)

is the system impulse response.
From (3.15) and expressing current at instant tk+1 in terms of the current at

instant tk and the input acting between tk and tk+1, one has

iL[k + 1] = e−ωpTsiL[k] +
∫ tk+Ts

tk

vRL(τ)g(Ts + tk − τ) dτ = f(iL[k],V , u[k]).

(3.18)
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This is the nonlinear discrete-time equation (3.3) for the RL network under consider-
ation, with V = [VA, VB ]T defined as the input vector for the system. The equation
describes the sampled inductor current dynamics in the most general case and without
approximations.

To determine the steady-state operating point relative to the sampled current,
let

iL[k + 1] = iL[k] � IL (3.19)

and assume a constant control input U , that is, a constant duty cycle D,

vRL,s(t) = cs(t)VA − c′s(t)VB =
{

VA, 0 ≤ t ≤ DTs,
−VB , DTs ≤ t ≤ Ts.

(3.20)

From (3.18), one has

IL

(
1 − e−ωpTs

)
=

∫ tk+Ts

tk

vRL,s(τ)g(Ts + tk − τ) dτ

⇒ IL =

∫ tk+Ts

tk

vRL,s(τ)g(Ts + tk − τ) dτ

1 − e−ωpTs
. (3.21)

It is of no interest, in this context, to explicitly work out the integral. What is important
to stress is that IL represents the steady-state inductor current at the sampling instant.
It is not the average value of the steady-state inductor current waveform iL,s(t),

IL � iL,s(tk) �= iL,s(t). (3.22)

The last step in the derivation of the discrete-time model prescribes to perturb
and linearize (3.18) around the steady-state operating point Q = (IL,V , U). To this
end, make the substitutions

iL[k] → IL + îL[k]

u[k] → U + û[k] (i.e., d[k] → D + d̂[k])

c(t) → cs(t) + ĉ(t).

(3.23)

The input perturbation v̂RL(t) acting on the RL series is therefore

v̂RL(t) = ĉ(t)VA − ĉ′(t)VB = (VA + VB) ĉ(t), (3.24)

and the state equation describing the perturbation dynamics becomes

îL[k + 1] = e−ωpTs îL[k] +
∫ Ts

0
v̂RL(τ)g(Ts − τ) dτ

= e−ωpTs îL[k] + (VA + VB)
∫ td+d̂[k]Ts

td

g(Ts − τ) dτ . (3.25)
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This equation is still nonlinear in d̂. The desired small-signal model of the sampled
inductor current is derived via first-order Taylor expansion in d̂,

îL[k + 1] ≈ e−ωpTs îL[k] + (VA + VB) g(Ts − td)d̂[k]Ts

= e−ωpTs îL[k] +
VA + VB

L
e−ωp(Ts−td)d̂[k]Ts, (3.26)

or
îL[k + 1] = ΦîL[k] + γû[k], (3.27)

with
Φ � e−ωpTs ,

γ � Ts

Nr

e−ωp(Ts−td) VA + VB

L
.

(3.28)

In the z-domain, the small-signal discrete-time model of the switched RL series net-
work is

Giu(z) � îL(z)
û(z)

=
1

z − Φ
γ

=
Ts

Nr

VA + VB

L

e−ωp(Ts−td)z−1

1 − e−ωpTsz−1 . (3.29)

A special case of interest arises when R → 0. In this case,

Giu(z) R→0−→ Ts

Nr

VA + VB

L

z−1

1 − z−1 . (3.30)

Not surprisingly, the discrete-time model of an ideal switched inductor is a
discrete-time integrator. The presence of a one-step delay implies that a change in
the control signal u[k] at sampling instant k only manifests itself at k + 1.

3.1.2 The General Case

The above-mentioned derivation highlights the essential aspects of the discrete-time
modeling process. One is now in a position to extend the procedure to the most general
case.

Assume again that a trailing-edge modulator is employed. Extending the
definitions given in the switched inductor examples, let xs(t) be the converter
steady-state trajectory due to the steady-state PWM command cs(t) and let
x̂(t) be the small-signal component that results from the PWM perturbation
ĉ(t) = c(t) − cs(t). Further assume, without loss of generality, that sampling occurs
during topological state S0 and denote with td the time interval between the sampling
event and the modulated edge of cs(t). It should be noted that td represents the total
loop delay introduced in Section 2.5.
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Within a given topological state Sc, the general solution of (3.1) from initial
state x(t0) is

x(t) = eAc(t−t0)x(t0) +
∫ t

t0

eAc(t−τ)BcV dτ. (3.31)

Step 1 of the discrete-time small-signal modeling derivation simply makes
repeated use of (3.31) throughout the switching interval in order to express x[k + 1]
in terms of x[k], V , and u[k]. In doing so, one must remember that the state vector
is a continuous function of time and therefore does not exhibit discontinuities at the
switching instants.

Once an expression for f is available, steps 2 and 3 of the small-signal modeling
procedure follow without conceptual difficulties. For the scenario depicted earlier and
illustrated in Fig. 3.2, the result is

Φ � ∂f

∂x

∣∣∣∣
Q

= eA0(Ts−td)eA1DTseA0(td−DTs) (3.32)

for the state matrix and is

γ � ∂f

∂u

∣∣∣∣
Q

=
Ts

Nr

eA0(Ts−td)
[(

A1X ↓ + B1V
)
−

(
A0X ↓ + B0V

)]
(3.33)

for the input matrix. Vector X ↓ � xs(t↓) is the value of xs(t) at the modulated edge
of cs(t), as indicated in Fig. 3.2. X ↓ is derived from the converter operating point

t

cs(t) c(t)

d̂[k]Ts

t
Ts

xs(t)

DTs DTs

d̂[k + 1]Ts

x̂ [k]
Φx̂ [k]γ û[k]

x̂ [k + 1]
X ↓

tk tk+1

td

x(t)

t↑ t↓

t

ĉ(t)

t↓

Figure 3.2 Waveforms
illustrating the discrete-time
model derivation.
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and equals

X ↓ =
(
I − eA1DTseA0D

′Ts

)−1
.

[
−eA1DTsA0

−1
(
I − eA0D

′Ts

)
B0 − A1

−1 (
I − eA1DTs

)
B1

]
V . (3.34)

In spite of the complex expressions, both (3.32) and (3.33) can be given simple
physical interpretations. First, note that expression of Φ can be thought of as the
repeated application of the exponential operator eAct to the initial state x̂[k],

x̂[k + 1]︸ ︷︷ ︸
State at tk+1

= eA0(Ts−td)︸ ︷︷ ︸
From t↓=t ′↓ to tk+1

. eA1DTs︸ ︷︷ ︸
From t↑ to t↓=t ′↓

. eA0(td−DTs)︸ ︷︷ ︸
From tk to t↑

. x̂[k]︸︷︷︸
State at tk

,

(3.35)
when û = 0. Therefore, expression of Φ simply reflects how the state perturbation
propagates through the various topological states of the converter, throughout the
switching interval, in the absence of a control perturbation.

As for matrix γ, its expression is nothing but the linear propagation of the state
small-signal component during the infinitesimally short interval d̂[k]Ts, followed by
the propagation of such perturbation from t′↓ to tk+1,

x̂[k + 1]︸ ︷︷ ︸
State at tk+1

= eA0(Ts−td)

︸ ︷︷ ︸
From t ′↓ to tk+1

[(
A1X ↓ + B1V

)
−

(
A0X ↓ + B0V

)]
︸ ︷︷ ︸

Slope of x̂(t) at t↓

û[k]
Nr

Ts︸ ︷︷ ︸
On−time perturbation︸ ︷︷ ︸

From t↓ to t ′↓

,

(3.36)
when x̂[k] = 0. Equation (3.6), finally, is the linear superposition of the two propa-
gations, which holds in the small-signal limit.

3.1.3 Discrete-Time Models for Basic Types of PWM
Modulation

Tables 3.1–3.3 summarize expressions for small-signal matrices Φ, γ, and δ for the
three most common types of pulse width modulation, obtained by straightforward
applications of the procedure outlined in Section 3.1. The expressions refer to
the sampling scheme sketched in each corresponding figure. Notice that for the
trailing-edge and symmetrical modulation, sampling during subtopology S0 is
assumed, whereas the leading-edge modulation case assumes sampling during
subtopology S1. Other cases, not considered here, can be nonetheless derived
without difficulty.

Note that all the matrices of the small-signal model are directly computed from
matrices Ac and Bc. The calculation can be entirely carried out numerically, as exem-
plified in Section 3.2.
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3.2 DISCRETE-TIME MODELING EXAMPLES

The discrete-time modeling procedure discussed in the previous section is now
illustrated by several practical examples. Before doing so, however, it is appropriate
to briefly address the problem of computational complexity. As one can imagine
by looking at equations reported in Tables 3.1–3.3, analytical derivation of the
discrete-time model of even the simplest converter represents a considerable
computational effort. One key step involved in the modeling step is the calculation
of the matrix exponential

eAcT .

Hand evaluation of eAcT is a rather lengthy process regardless of the approach one
undertakes. One method for evaluating the matrix exponential is to first perform a
basis transformation and express Ac in a form for which the exponential is easily
computable. This can be either a diagonal form or, more generally, the canonical

TABLE 3.1 Discrete-Time Small-Signal Model—Trailing-Edge Modulation

r(t)

t

U

t

cs(t)

Ts

DTs

Nr

td

Discrete-Time Model

Φ = eA0(Ts−td)eA1DTseA0(td−DTs),

γ =
Ts

Nr

eA0(Ts−td)F
↓
,

δ = C0.

F
↓
�
(
A1X↓

+B1V
)
−
(
A0X↓

+B0V
)

,

X
↓
=
(
I − eA1DTseA0D

′Ts

)−1
.

[
−eA1DTsA−1

0

(
I − eA0D

′Ts

)
B0 −A−1

1
(
I − eA1DTs

)
B1

]
V .
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TABLE 3.2 Discrete-Time Small-Signal Model—Leading-Edge Modulation

r(t)

t

U

t

cs(t)

Ts

DTs

Nr

td

Discrete-Time Model

Φ = eA1(td−D′Ts)eA0D
′TseA1(Ts−td),

γ =
Ts

Nr

eA0(Ts−td)F
↑
,

δ = C1.

F
↑
�
(
A1X↑

+B1V
)
−
(
A0X↑

+B0V
)

,

X
↑
= eA0D

′TsX
↓
−A−1

0

(
I − eA0D

′Ts

)
B0V .

(X
↓

as defined for the trailing-edge modulation)

TABLE 3.3 Discrete-Time Small-Signal Model—Symmetrical Modulation

r(t)

t

U

t

cs(t)

Ts

DTs

Nr

Discrete-Time Model

Φ = eA0
Ts

2 (1−D)eA1DTseA0
Ts

2 (1−D),

γ =
Ts

2Nr

eA0
Ts

2 (1−D)
[
F

↓
+ eA1DTsF

↑

]
,

δ = C0.

(F
↑

and F
↓

as defined for the trailing-edge and leading-edge modulations)
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Jordan form [134]. Once the matrix exponential is evaluated, one can go back to the
original basis via the inverse basis transformation.

Matrix inversion is another operation involved in the discrete-time modeling
formulas. For matrices greater than 2 × 2, hand calculation of the inverse quickly
becomes a computationally intensive task.

If one seeks a closed-form expression for the transfer functions of interest,
software tools for scientific computing such as Mathematica® can certainly bypass
bothersome and error-prone hand calculations. Closed-form expressions, however,
are only useful to the extent that they provide clear insights into the effects of various
circuit parameters. In the z-domain formulation of the converter transfer functions,
however, the parameters appear as part of exponential or trigonometric function argu-
ments, making the interpretation difficult.

One possible, yet approximate, approach that retains a closed-form expression
of the converter transfer functions consists in the expansion [36]

eAcT ≈ I + AcT , (3.37)

which removes exponential or trigonometric functions from the analysis and is based
on the assumption that the converter natural time constants are much longer than a
switching period.

The approach followed in this section—and in the remaining chapters of the
book—is a numerical one. The transfer functions of interest are evaluated numerically
via systematic Matlab® scripting. A few simple Matlab® commands provide a fast,
reliable, and overall better way to deal with discrete-time modeling in the design
practice.

Unless otherwise stated, every design example discussed in this and in Chapter
4 assumes a normalized carrier amplitude

Nr = 1. (3.38)

With this choice, control signal u[k] varies in the [0, 1] range.

3.2.1 Synchronous Buck Converter

As the first example, consider the digital voltage-mode control case study discussed in
Chapter 2, with the parameters given in Table 1.2 of Chapter 1, where analog control
of the same converter is considered. For convenience of reference, the block diagram
of the digitally controlled Buck converter is reported again in Fig. 3.3.

It is assumed that a hardware-based controller is implemented, including the
A/D converter, the digital compensator, and the trailing-edge digital pulse width mod-
ulator. The timing diagram of such controller is illustrated in Fig. 3.4. Sampling of the
output voltage occurs tcntrl = 400 ns before the DPWM latches the control command
at the beginning of every modulation cycle.
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Figure 3.3 Synchronous Buck converter example: digital voltage-mode control.
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d[k]Ts Figure 3.4 Synchronous Buck
converter example: timing
diagram.

A state-space representation of the converter is first required,⎡
⎢⎢⎢⎣

diL
dt

dvC

dt

⎤
⎥⎥⎥⎦ = Ac

⎡
⎣ iL(t)

vC(t)

⎤
⎦ + Bc

⎡
⎣ Vg

Io

⎤
⎦ ,

⎡
⎣ iL(t)

vo(t)

⎤
⎦ = Cc

⎡
⎣ iL(t)

vC(t)

⎤
⎦ + Ec

⎡
⎣ Vg

Io

⎤
⎦ .

(3.39)
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For the Buck converter under study, the state matrices A1 and A0 are the same,

A1 = A0 =

⎡
⎢⎢⎣

−rC + rL

L
− 1

L

1
C

0

⎤
⎥⎥⎦ � A, (3.40)

whereas the matrices B1 and B0 are given by

B1 =

⎡
⎢⎢⎣

1
L

rC

L

0 − 1
C

⎤
⎥⎥⎦ ,

B0 =

⎡
⎢⎢⎣

0
rC

L

0 − 1
C

⎤
⎥⎥⎦ .

(3.41)

The output matrices Cc are as follows:

C1 = C0 =

⎡
⎣ 1 0

rC 1

⎤
⎦ � C. (3.42)

The matrices Ec do not need to be evaluated as, as anticipated, they do not enter into
the control-to-output small-signal modeling.

The converter steady-state inputs are the input voltage Vg, the load current Io,
and the duty cycle D. Given the converter parameters and considering converter oper-
ation at full load Io = 5 A, one has

Vg = 5 V,

Io = 5 A,

D =
Vo

Vg

=
1.8 V
5 V

= 0.36.

(3.43)

From Table 3.1, the total loop delay td is

td = tcntrl + tDPWM

= tcntrl + DTs

= 400 ns + 360 ns = 760 ns. (3.44)
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Inset 3.1 discusses the few Matlab® instructions needed to derive the
discrete-time small-signal model of the converter based on the results from
Section 3.1.

�

�

�

�
Inset 3.1 – Matlab® Example: Synchronous Buck Converter

This example shows how to develop the small-signal control-to-output transfer
functions Gvu(z) and Giu(z) using Matlab®. First, define the converter state-space
matrices:

A1 = [ -(rC+rL)/L -1/L; 1/C 0 ];
A0 = A1;
b1 = [ 1/L rC/L; 0 -1/C ];
b0 = [ 0 rC/L; 0 -1/C];
c1 = [1 0; rC 1];
c0 = c1;

Next, evaluate X ↓ according to Table 3.1. The expm method can be used to numeri-
cally evaluate the matrix exponential:

A1i = A1^-1;
A0i = A0^-1;
Xdown = ((eye(2)-expm(A1*D*Ts)*expm(A0*Dprime*Ts))^-1)*...

(-expm(A1*D*Ts)*A0i*(eye(2)-expm(A0*Dprime*Ts))*b0+...
-A1i*(eye(2)-expm(A1*D*Ts))*b1)*[Vg;Io]

The above Matlab® code assumes that matrices A1 and A0 are invertible, which is
always the case as long as parasitic components (rC , rL) are included in the modeling
step.

Then, construct small-signal model matrices Φ, γ, and δ as per Table 3.1:

Phi = expm(A0*(Ts-td))*expm(A1*D*Ts)*expm(A0*(td-D*Ts));
gamma = expm(A0*(Ts-td))*((A1-A0)*Xdown + (b1-b0)*[Vg;Io])*Ts;
delta = c0;

Finally, extract the control-to-output transfer functions Gvu(z) and Giu(z) by con-
verting the state-space representation (Φ,γ, δ) into Matlab® transfer function objects.
First, build a state-space object using method ss and then the transfer function objects
using tf:

sys = ss(Phi,gamma,delta(1,:),0,Ts);
Giuz = tf(sys);
sys = ss(Phi,gamma,delta(2,:),0,Ts);
Gvuz = tf(sys);

The magnitude and phase Bode plots of Gvu(z) are shown in Fig. 3.5. For
comparison, Bode plots of Gvu(s) = Gvd(s) (recall that Nr = 1) obtained via con-
ventional averaged small-signal modeling are also shown. The magnitude responses
predicted by the two models are indeed quite similar, with a small departure visible
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Figure 3.5 Synchronous Buck converter example: Bode plots of the control-to-output
voltage transfer functions Gvu(z) based on the discrete-time modeling approach and Gvu(s)
based on the standard averaged modeling approach.

in the proximity of the Nyquist rate fs/2 = 500 kHz. On the other hand, the compar-
ison between the phase responses of the two models reveals the additional phase lag
caused by the loop delay td, correctly modeled by the discrete-time transfer function
but absent in the s-domain averaged model.

Because of the very small ripple in the converter output voltage, the
small-aliasing approximation discussed in Section 2.6.2 is indeed well satisfied in
this example,

vo[k] ≈ vo(tk). (3.45)

On the basis of the considerations in Section 2.6.2, it is expected that the effective
plant transfer function

G†
vu(s) � Gvu(s)e−std (3.46)

provides a valid correction to Gvu(s) based on the averaged small-signal model. In
other words, it is expected that G†

vu(s) should closely approximate Gvu(z). The Bode
plots of Gvu(z) and G†

vu(s) compared in Fig. 3.6 confirm that this is indeed the case.
A small departure between the z-domain model and the effective s-domain model is
nonetheless visible close to the Nyquist rate, due to the fact that aliasing effects are
not entirely absent.
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Figure 3.6 Synchronous Buck converter example: a comparison between the discrete-time
model Gvu(z) and the effective s-domain model G†

vu(s) = Gvu(s)e−std obtained by
including the additional phase lag due to the total loop delay td.

Consider next the control-to-inductor current response, which would be of
interest in digital current-mode control of the synchronous Buck converter. Suppose
that a current-mode digital controller is implemented so that the Buck converter
inductor current is sampled at the end of the turn-off interval. For simplicity, assume
tcntrl = 0 and that therefore the compensator updates the control command instantly.
As a result, the total loop delay td equals the modulation delay tDPWM = DTs.

The Bode plots of Giu(z) versus Giu(s), reported in Fig. 3.7, compare the
dynamics of the sampled inductor current îL[k] and the averaged inductor current

îL(t), respectively. As with the output voltage dynamics, an extra phase lag is pre-
dicted by the discrete-time model in the high-frequency range due to the modulation
delay tDPWM = DTs. Even more importantly, significant differences between the
responses predicted by the discrete-time and the continuous-time averaged model-
ing are found in Fig. 3.7 at low frequencies. The continuous-time averaged model
Giu(s) predicts a zero at the origin s = 0,

Giu(s) � îL(s)
û(s)

=
Vg

Nr

sC

1 + s (rL + rC) C + s2LC
, (3.47)
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Figure 3.7 Synchronous Buck converter example: comparison between Bode plots of the
control-to-inductor current transfer functions Giu(s) based on continuous-time averaged
model and Giu(z) based on the discrete-time model.

while a finite, nonzero value is predicted by the discrete-time model. The difference
is an example of aliasing effects due to sampling, which manifest themselves at dc.

To explain the different dynamics of the averaged current îL(t) and the current
îL[k] sampled at the end of the off-time interval, consider Fig. 3.8. If the converter is
loaded with a constant current load Io, as is the case in the example considered, a static
variation û of the control command produces no variation in the average inductor cur-
rent iL = Io. This fact explains the zero in Giu(s) located at s = 0. On the other hand,
the sampled current iL[k] undergoes a variation îL[k] due to the change in the output
voltage from Vo = DVg to Vo + v̂o = (D + d̂)Vg and the corresponding variation of
the inductor current ripple. Neglecting parasitic resistances rL and rC , one has

iL[k] = Io −
Vo + v̂o

L
(1 − D − d̂)

Ts

2
= Io −

Ts

2L
(D + d̂)(1 − D − d̂)Vg. (3.48)

The small-signal static variation îL of the sampled current relative to the control
perturbation û is, therefore,

Giu(z = 1) � îL(z)
û(z)

∣∣∣∣∣
z=1

= − Ts

Nr

(1 − 2D)Vg

2L
, (3.49)
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which means that Giu(z) must present a nonzero value at dc. With the parameters
of the considered Buck converter example,

Giu(z = 1) ≈ −0.7 = −3 dB∠−180◦. (3.50)

This is confirmed by the phase and the magnitude of Giu(z) in Fig. 3.7 at low
frequencies.

The substantial difference between the discrete-time and the averaged dynam-
ics at low frequencies is a result of the strong violation of the small-aliasing approxi-
mation. In this case, no simple corrections are available to improve predictions of the
averaged small-signal model, and the design of a digital controller that relies on sam-
pling of the signal of interest must be based on the discrete-time model that correctly
considers the aliasing effects. To show that an attempt to correct for the delay effects
is insufficient, suppose an effective control-to-inductor current transfer function is
defined as

G†
iu(s) � Giu(s)e−std , td = tDPWM = DTs, (3.51)

with the purpose of modeling the additional small-signal phase delay introduced by
the modulation. The Bode plots of the transfer functions Giu(z) and G†

iu(s) are com-
pared in Fig. 3.9. Although the high-frequency predictions of G†

iu(s) are somewhat
better compared to the high-frequency predictions of Giu(s) in Fig. 3.7, note that
the aliasing effects are such that neither the high-frequency nor the low-frequency
responses are modeled very well by G†

iu(s). In particular, the responses of G†
iu(s)

and Giu(z) are qualitatively different at low frequencies.

3.2.2 Boost Converter

Consider now the digital version of the Boost converter average current control dis-
cussed in Section 1.5.2. The converter parameters are given in Table 1.3. A block
diagram of the digital current-mode controller is illustrated in Fig. 3.10.

The inductor current is sampled at the middle of the turn-off interval, as
illustrated in the control timing diagram of Fig. 3.11. Following the discussion in
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Figure 3.9 Synchronous Buck converter example: comparison between the Bode plots of
the discrete-time model Giu(z) and the effective s-domain model G†

iu(s).

Section 2.2.1, this sampling strategy is well suited when the goal is to regulate
the average value of the current. The strategy is easily implemented by employing
a symmetrical digital pulse width modulator and by synchronizing the sampling
instants with the digital carrier peaking instants.

It is assumed that control calculations are carried out within a small fraction
tcntrl of the switching period immediately following the sampling event and that the
DPWM immediately latches the updated control command. Such small control delay
tcntrl is also highlighted in Fig. 3.11, and the situation is precisely the one depicted in
Table 3.3. It is important to note that, given the finite time tcntrl available for control
calculations, the control command must be suitably saturated in order not to produce
a duty cycle larger than

Dmax = 1 − 2tcntrl

Ts

. (3.52)

Determine first the discrete-time small-signal dynamics of the control-to-
inductor current, described by transfer function Giu(z). Recall from Section 1.4.3
that the state-space matrices of the Boost converter during subtopologies S0 and S1
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are, respectively,

A1 =

⎡
⎢⎢⎢⎣

−rL + Rsense

L
0

0 − 1
RoC

⎤
⎥⎥⎥⎦ ,

A0 =

⎡
⎢⎢⎢⎣

−rL + Rsense

L
− 1

L

1
C

− 1
RoC

⎤
⎥⎥⎥⎦ ,

(3.53)

while the input-to-state matrices are

B0 = B1 =

⎡
⎢⎣

1
L

0

⎤
⎥⎦ . (3.54)

The steady-state operating point of the converter, as determined by its operating
conditions at full power Po = 500 W, is

Vg = 120 V,

D = 0.68.
(3.55)

Matlab® modeling code for the Boost converter example is provided in
Inset 3.2.

�

�

�

�
Inset 3.2 – Matlab® Example: Boost Converter

The following Matlab® lines implement the numerical calculations of the
control-to-inductor current transfer function Giu(z) as per Table 3.3.

% Converter state-space matrices
A1 = [ -rL/L 0; 0 -1/Ro/C ];
A0 = [ -rL/L -1/L; 1/C -1/Ro/C ];
b1 = [ 1/L; 0];
b0 = b1;
c1 = [ 1 0; 0 1 ];
c0 = c1;

% Calculation of Xup and Xdown
A1i = A1^-1;
A0i = A0^-1;
Xdown = ((eye(2)-expm(A1*D*Ts)*expm(A0*Dprime*Ts))^-1)*...

(-expm(A1*D*Ts)*A0i*(eye(2)-expm(A0*Dprime*Ts))*b0
+...
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-A1i*(eye(2)-expm(A1*D*Ts))*b1)*[Vg];
Xup = expm(A0*Dprime*Ts)*Xdown-A0i*(eye(2)-expm(A0*Dprime*Ts))

*b2*[Vg];

Fdown = (A1-A0)*Xdown + (b1-b0)*[Vg;Iload;Vload];
Fup = (A1-A0)*Xup + (b1-b0)*[Vg;Iload;Vload];

% Small-signal model matrices
Phi = expm(A0*Dprime*Ts/2)*expm(A1*D*Ts)*expm(A0*Dprime*Ts/2);
gamma = (Ts/2)*expm(A0*Dprime*Ts/2)*(Fdown + expm(A1*D*Ts)*Fup);
delta = c0;

% Convert from state-space to transfer function object
sys = ss(Phi,gamma,delta(1,:),0,Ts);
Giuz = tf(sys);

Figure 3.12 shows a comparison between the Bode plots of the discrete-time
model Giu(z) found using the code in Inset 3.2, and the continuous-time averaged
model Giu(s) = Gid(s) found in Section 1.5.2. As seen in the Buck example, the
primary difference between the averaged and the discrete-time modeling is in the
extra phase lag due to the control loop delays.
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Figure 3.12 Boost converter example: Bode plots of the control-to-inductor current transfer
functions Giu(z) based on the discrete-time model, and Giu(s) based on the averaged model.
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In Section 1.5.2, the approximation

Gid(s) ≈
Vo

sL
(ω  ω0)

is mentioned as a useful way to quickly evaluate the high-frequency behavior of
Gid(s). A corresponding approximation exists for Giu(z),

Giu(z) ≈ Ts

Nr

Vo

L

z−1

1 − z−1 (ω  ω0). (3.56)

This high-frequency approximation is also depicted in Fig. 3.12. Equation (3.56) can
be derived by neglecting the output voltage dynamics—an assumption well justified
above the system resonance, where perturbations on vo are well filtered. Under this
assumption, the Boost converter becomes the same as the switched inductor example
shown in Fig. 3.1(a), with VA = Vg and −VB = Vg − Vo.

It should be noted that the inductor current ripple is by no means negligible with
respect to the average value. However, the particular sampling strategy—symmetrical
pulse width modulation combined with sampling the inductor current at the middle of
the turn-off interval—forces the sampled current to closely match its averaged value,
that is,

vs[k] ≈ vs(tk) ⇒ iL[k] ≈ iL(tk). (3.57)

On the basis of the discussion in Section 2.6.2, the small-aliasing approximation is
well satisfied. As a result, it is expected that the effective s-domain model

G†
iu(s) � Giu(s)e−s Ts

2 (3.58)

gives predictions close to the true small-signal dynamics predicted by Giu(z). This
is confirmed by the comparison illustrated in Fig. 3.13, where only a minor discrep-
ancy between the magnitude responses is observed in close proximity to the Nyquist
frequency.

3.3 DISCRETE-TIME MODELING OF TIME-INVARIANT
TOPOLOGIES

When a converter topology is time-invariant, it is possible to straightforwardly derive
the control-to-output transfer function of the converter as a suitable discretization of
its averaged small-signal model. By time-invariant topology, one refers to a converter
circuit where subtopologies S0 and S1 are equal once the inputs are set to zero, and
where outputs are linearly related to the converter inputs and state variables. Equiv-
alently, the notion of time-invariant topology can be defined by requiring that

A0 = A1(� A),

C0 = C1(� C).
(3.59)
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Figure 3.13 Boost converter example: comparison between the discrete-time model Giu(z)
and the effective s-domain model G†

iu(s).

When such conditions are satisfied and the system inputs are constant, the converter
is large-signal linear with respect to c(t). Notable examples of such converters are
Buck topologies—see Fig. 3.14—as far as the inductor current and the output voltage
are concerned.

Consider a switched-mode power converter satisfying (3.59). Figure 3.15
illustrates the system response to a control perturbation û superimposed on the
steady-state command U . Owing to system linearity, the perturbed converter output
voltage v̂o(t) can be expressed as

v̂o(t) =
∫ +∞

0
ĉ(τ)g(t − τ) dτ =

∫ t

0
ĉ(τ)g(t − τ) dτ, (3.60)

with g(t) representing the impulse response of the converter to the control input ĉ. The
last equality follows from the system causality, that is, from g(t) = 0 for all t < 0. It
is important to stress that the concept of impulse response is applicable here because
the system is linear.

In Section 2.5.2, it is recognized that, in the small-signal limit, ĉ(t) is well
approximated by a modulated train of Dirac pulses delayed by DTs with respect to
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Figure 3.14 Topological invariance of the Buck converter.

the beginning of the switching interval,

ĉ(t) ≈ Ts

Nr

+∞∑
n=0

û[n]δ(t − nTs − DTs). (3.61)

Therefore, one has

v̂o(t) =
Ts

Nr

+∞∑
n=0

û[n]
∫ +∞

0
δ(τ − nTs − DTs)g(t − τ) dτ

=
Ts

Nr

+∞∑
n=0

û[n]g(t − nTs − DTs),

which, once sampled, becomes

v̂o[k] =
Ts

Nr

+∞∑
n=0

û[n]g(kTs − nTs − DTs). (3.62)

Hence, the sampled output voltage v̂o[k] is the discrete convolution between
the control command û and g(kTs − DTs), that is, the delayed and sampled ver-
sion of the converter impulse response. The modulator delay tDPWM = DTs naturally
appears in the result.
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Figure 3.15 Small-signal
discrete-time converter response
to an input perturbation û.

It is convenient, at this point, to introduce a notation for the above-mentioned
discretization. If G(s) is the transfer function of a continuous-time system and g(t)
the corresponding impulse response, define

ZTs
[G(s)] �

+∞∑
n=0

g(nTs)z
−n . (3.63)

The above-mentioned operation calculates the Z-transform of the sampled version
of g(t) and is commonly known as impulse-invariant discretization. The result of
the operation is a z-domain transfer function G(z) whose impulse response is the
sampled version of g(t).

With this definition, and taking the Z-transform of both sides of (3.62), one has

Gvu(z) =
v̂o(z)
û(z)

=
Ts

Nr

ZTs

[
G(s)e−sDTs

]
, (3.64)
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where G(s) represents the Laplace transform of g(t), that is, the transfer function
between the PWM signal c(t) and the converter output voltage vo(t). As the system is
assumed to be large-signal linear, G(s) must coincide with the averaged, small-signal
control-to-output transfer function Gvd(s). Therefore,

Gvu(z) =
v̂o(z)
û(z)

=
Ts

Nr

ZTs

[
Gvd(s)e

−sDTs
]
. (3.65)

More generally, both control and modulation delays are present to yield an
overall loop delay td. Analog sensing and conditioning, modeled by transfer func-
tion H(s), can be included as well. In summary, one can use the above-mentioned
arguments to evaluate the z-domain uncompensated loop gain as [131]

Tu(z) =
Ts

Nr

ZTs

[
Tu(s)e−std

]
=

Ts

Nr

ZTs

[
T †

u(s)
] , (3.66)

where Tu(s) � Gvd(s)H(s) is the Laplace-domain uncompensated loop gain of the
system, evaluated assuming zero overall loop delay and unity DPWM carrier ampli-
tude.

Equation (3.66) represents the main result of this section. It expresses the
fact that the small-signal discrete-time dynamics of a time-invariant topology is the
impulse-invariant discretization of the effective small-signal s-domain dynamics.
It should be emphasized again that the result (3.66) holds only for time-invariant
converters, that is, the converters such as the Buck converter, where the conditions
(3.59) are met.

3.3.1 Equivalence to Discrete-Time Modeling

The objective of this section is to show that the exact discrete-time modeling
framework discussed in Section 3.1 is equivalent the impulse-invariant discretization
(3.66) when applied to time-invariant topologies. The approach is to start from
the state-space description (Φ′,γ ′, δ′) of (3.66) and to show that the small-signal
matrices (Φ,γ, δ) of the discrete-time model indeed coincide with (Φ′,γ ′, δ′) when
the conditions (3.59) are met.

The system state-space equations are

dx

dt
= Acx(t) + BcV ,

y(t) = Ccx(t) + EcV .

(3.67)

From (3.59), the converter state-space equation becomes

dx

dt
= Ax(t) + BcV . (3.68)
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Equation (3.68) can now be integrated assuming that the PWM command ĉ(t)
consists of a train of Dirac pulses delayed by the modulator delay, in agreement with
(3.61),

ĉ(t) ≈ Ts

Nr

+∞∑
n=0

û[n]δ(t − nTs − td), (3.69)

where the overall loop delay td has been considered to obtain the most general result.
With such control input, the sampled dynamics of the state perturbation x̂[k] assumes
the form

x̂[k + 1] = Φ′x̂[k] + γ ′û[k],

ŷ[k] = δ′x̂[k],
(3.70)

where

Φ′ = eATs ,

γ ′ =
Ts

Nr

eA(Ts−td) (B1 − B0) V ,

δ′ = C.

(3.71)

This result can be equivalently obtained by discretizing the converter
state-space averaged, small-signal equations (1.34), provided that control input d̂(t)
is replaced by the modulated train of delayed Dirac pulses (3.69). Therefore, under
the above-mentioned conditions, (3.70) is the impulse-invariant discretization of the
state-space averaged small-signal model. To complete the proof, then, one simply
needs to show that Φ′ = Φ and γ ′ = γ (observe that δ′ = C = δ).

From matrix algebra, recall that if square matrices X and Y commute, then
their exponentials commute too and their product is the exponential of X + Y ,

XY = Y X ⇒ eXeY = eY eX = e(X+Y ). (3.72)

As A0 = A1 = A, matrices A0 and A1 commute. This is therefore a sufficient
condition for (3.32) to be written as

Φ = eA(Ts−td+DTs+td−DTs) = eATs = Φ′. (3.73)

Furthermore, A0 = A1 implies that γ is independent of X ↓ and therefore

γ =
Ts

Nr

eA(Ts−td) [(B1 − B0) V ] = γ ′, (3.74)

completing the proof.
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3.3.2 Relationship with the Modified Z-Transform

Discretization (3.66) can be rewritten in terms of the modified Z-transform of the
analog process Tu(s). The modified Z-transform of a continuous-time signal g(t) is
defined as

G(z;m) �
+∞∑
n=0

g(nTs + mTs)z
−n = ZTs

[
G(s)esmTs

]
, (3.75)

with 0 < m < 1. It is therefore the Z-transform of the sequence g(nTs + mTs)
obtained from g(t) by anticipating the signal by mTs seconds and then sampling it
with period Ts.

If td = LTs − mTs, L ∈ N, (3.66) can be put in the form

Tu(z) =
Ts

Nr

z−LZTs

[
Tu(s)esmTs

]
=

Ts

Nr

Tu(z;m)z−L, (3.76)

and the modeling task reduces to the evaluation of the modified Z-transform of Tu(s)
with parameter m.

3.3.3 Calculation of Tu(z)

Analytical calculation of Tu(z) can be performed in several ways. Following (3.76),
one approach is to anti-transform Tu(s) back into the time domain, anticipate it by
mTs seconds, sample it with period Ts, evaluate the Z-transform Tu(z;m) of the
resulting sequence, and plug it into (3.76).

Consider, for instance, a first-order Tu(s) such as

Tu(s) =
Tu0

1 +
s

ωP

. (3.77)

Its inverse Laplace transform is the causal signal

g(t) =
{

ωP Tu0e
−ωP t, t ≥ 0,

0 t < 0.
(3.78)

Anticipating g(t) by mTs and sampling yields

g(kTs + mTs) =
{

ωP Tu0e
−ωP mTse−ωP kTs , k ≥ 0,

0 k < 0,
(3.79)
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whose Z-transform is

Tu(z;m) =
+∞∑
k=0

g(kTs + mTs)z
−k

= ωP Tu0e
−ωP mTs

+∞∑
k=0

(e−ωP Tsz−1)k

=
ωP Tu0e

−ωP mTs

1 − e−ωP Tsz−1 , |z| > e−ωP Ts .

(3.80)

From (3.76)

Tu(z) =
Ts

Nr

ωP Tu0e
−mωP Ts

1 − e−ωP Tsz−1 z−L. (3.81)

An alternative calculation approach, based on the residue theory, allows direct
transformation of Tu(s) into Tu(z). Consider the expansion of Tu(s) into partial frac-
tions,

Tu(s) =
N∑

i=1

Ai

s − si

, (3.82)

where, for simplicity, poles si of Tu(s) are assumed to be all of order one. By
antitransforming (3.82), anticipating it by mTs seconds, sampling, and finally
Z-transforming the resulting sequence, one finds

Tu(z;m) =
N∑

i=1

Aie
simTs

1 − esiTsz−1 . (3.83)

Coefficients Ai are the residues of Tu(s) associated with poles si. For simple poles,
the Ai’s are given by

Ai = lim
s→si

(s − si)Tu(s). (3.84)

Plugging (3.83) into (3.76) yields

Tu(z) =
Ts

Nr

z−L
N∑

i=1

Aie
simTs

1 − esiTsz−1 . (3.85)

Note that this expansion also holds when there are complex conjugate pairs among
the si’s. In such case, corresponding Ai’s would appear in complex conjugate pairs
as well.

In the example above, the only residue of Tu(s) is

AP = lim
s→−ωP

(s + ωP )Tu(s) = ωP Tu0, (3.86)

and one immediately obtains (3.81).
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TABLE 3.4 Expressions of Tu(z) for Three Different Tu(s)’s.
td = LTs −mTs, L ∈ N, 0 < m < 1

Tu(s) Tu(z) =
Ts

Nr
Tu(z;m)z−L

K

s

Ts

Nr

K

1 − z−1 z−L

Tu0

1 +
s

ωP

Ts

Nr

ωP Tu0e
−mωP Ts

1 − e−ωP Tsz−1 z−L

Tu0

1 +
s

ω0Q
+

s2

ω0
2

Ts

Nr

ω0
2Tu0

ωd

(
emαTs sin(mωdTs) + e(1+m)αTs sin((1 − m)ωdTs)z

−1
)

1 − 2eαTs cos (ωdTs)z−1 + e2αTsz−2 z−L

(
α � − ω0

2Q
, ωd � ω0

√
1 − 1

4Q2 , Q ≥ 1
2

)

Closed-form expressions of Tu(z) for three different Tu(s)’s are reported
in Table 3.4. Observe that the first two cases coincide with the results derived in
Section 3.1.1 in the discussion of the switched inductor example. It should be noted
that the switched inductor is also an example of time-invariant topology.

In the third example, a second-order plant is considered,

Tu(s) =
Tu0

1 +
s

ω0Q
+

s2

ω0
2

, (3.87)

with Q ≥ 0.5. Poles s1 and s2 are complex conjugates and equal

s1,2 = α ± jωd, (3.88)

with
α � − ω0

2Q
,

ωd � ω0

√
1 − 1

4Q2 .

(3.89)

Following the residue approach, first write the continuous-time plant as

Tu(s) =
A

s − s1
+

A∗

s − s∗1
, (3.90)

with

A = lim
s→s1

(s − s1) Tu(s) =
ω2

0Tu0

2jωd

. (3.91)
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The expression for Tu(z) reported in Table 3.4 is then obtained from (3.85) after a
few algebraic manipulations.

Hand evaluation of Tu(z) in more complex cases quickly becomes impractical
and yields expressions that are difficult to manipulate for design purposes. A quicker
alternative is to resort to software tools for scientific computing and evaluate G(z)
numerically. Matlab® provides dedicated commands for continuous-to-discrete-time
conversion of a given transfer function that can be readily employed to evaluate
(3.66).

As a final remark, observe from (3.85) that s-domain poles transform into
z-domain poles according to

si → esiTs . (3.92)

On the other hand, no simple expressions for the locations of the z-domain zeros are
available.

�

�

�

�
Inset 3.3 – Impulse-Invariant Discretization of Gvd(s) Using Matlab®

Going back to the Buck converter example of Section 3.2.1, suppose an s-domain
expression of Gvd(s) is available in the Matlab® workspace as a transfer function
object named Gvds. For instance, following (1.20), Gvds can be obtained by the
following code:

s = tf('s');
Gvds = Vg*(1+s*rC*C)/(1+s*(rs+rC)*C+s^2*L*C);

To define a transport delay for Gvds, Matlab® allows the user to define an
outputdelay property representing a transport delay block cascaded to Gvds.
Setting such property to the intended small-signal loop delay td is accomplished
as follows:

Gvds.outputdelay = td;

Variable td must be evaluated from the system timing diagram for the particular
operating point around which the converter is linearized.
In the Buck example in Section 3.2.1, we have td = 760 ns.
Next, discretization (3.66) is accomplished via the c2d command:

Gvuz = (1/Nr)*c2d(Gvds,Ts,'imp');

where the 'imp' setting specifies the impulse-invariant discretization. This command
produces a z-domain transfer function object Gvuz with a sampling time equal to the
switching period Ts of the converter. This transfer function is equal to Gvu(z) as
defined by (3.66).
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Figure 3.16 Synchronous Buck converter example: Bode plots of Gvd(z)
calculated using the general discrete-time modeling approach and using the impulse-invariant
discretization.

3.3.4 Buck Converter Example Revisited

As the Buck converter examined in Section 3.2.1 is an example of time-invariant
topology, one can verify that the same Gvu(z) is predicted by the general
discrete-time modeling framework—see Inset 3.1—and by the impulse-invariant
approach—see Inset 3.3.

The comparison, illustrated in Fig. 3.16, confirms that for time-invariant
topologies the two approaches yield the same result. The same verification can be
carried out for the control-to-inductor current transfer function Gid(z).

3.4 MATLAB® DISCRETE-TIME MODELING OF BASIC
CONVERTERS

In this section, a simple Matlab® framework for numerically deriving the
control-to-output small-signal model of a switched-mode power converter is
presented. The framework is equipped with models for the Buck, Boost, and
inverting Buck–Boost topologies and also allows for user-defined converters to be
specified.

The system template considered by the Matlab® code is depicted in Fig. 3.17.
The converter is assumed to operate from a stiff input voltage Vg , and with a load
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Switched-mode
power converter

Vg +

−

D(= U)

Vo

Generalized loadc(t)

DPWM
with Nr = 1

Io

Vload

Rload

Iload
+− +−

Figure 3.17 System template of the proposed Matlab® modeling framework.

modeled by an independent current sink Iload , in parallel with a Thévenin source
(Vload , Rload ). Such combination allows load modeling in a variety of situations,
including a constant current load, a resistive load, or a Thévenin load, which is
useful when the converter operates on a regulated dc bus.

The digital pulse width modulator can be a trailing-edge, a leading-edge, or a
symmetrical DPWM. It is assumed that Nr = 1, so that the control input U coincides
with the converter duty cycle D. For nonunity Nr values, the user simply needs to
multiply the Matlab®-generated transfer functions by 1/Nr.

The sampling strategy is defined by a single parameter td, which represents the
total loop delay and defines the position of the sampling instant with respect to the
position of the steady-state PWM modulated edge—refer to Figs 3.1 and 3.2. For the
symmetrical modulator case, the sampling instant is always assumed to be located at
the carrier peak, as shown in Fig. 3.3, and the parameter td is ignored.

The modeling code is implemented as the extract_models Matlab® script
reported in Inset 3.4. The inputs in the script are as follows:

• params: structure object defining converter parameters. When modeling prede-
fined topologies (Buck, Boost, or Buck–Boost), params contains the following
fields:

◦ params.L: converter inductance L

◦ params.rL: converter inductor series resistance rL

◦ params.C: converter capacitance C

◦ params.rC: converter capacitor equivalent series resistance rC

When a user-defined converter is to be modeled, paramsmust specify matrices
(Ac,Bc,Cc) relative to the converter subtopologies as follows:

◦ params.A1 for matrix A1

◦ params.A0 for matrix A0

◦ params.b1 for matrix B1

◦ params.b0 for matrix B0

◦ params.c1 for matrix C1

◦ params.c0 for matrix C0
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• Vg: Converter input voltage Vg

• D: Converter steady-state duty cycle D

• Iload, Rload, Vload: Load parameters Iload , Rload , and Vload .

• td: Total loop delay td

• Ts: Converter switching period Ts

• converter: String defining the converter type. Default supported commands
are 'buck', 'boost', and 'buckboost'. String 'custom' allows for
user-defined models to be specified via the params structure.

• modulator: String defining the PWM carrier type. Supported types are 'te',
'le', or 'sym' for trailing-edge, leading-edge, or symmetrical modulation,
respectively.

The output of the script is a transfer function matrix object Wz representing the
discrete-time small-signal model transfer matrix W (z) and transfer function matrix
object Ws of the averaged small-signal model W (s).

�

�

�

�
Inset 3.4 – Matlab® Modeling Script

function [Wz,Ws] = ...
extract_models(Vg,params,Rload,Iload,Vload,D,td,Ts,conv,
modulator)

Dprime = 1-D;

s = tf('s');
z = tf('z',Ts);

switch conv

case 'buck'
L = params.L;
rL = params.rL;
C = params.C;
rC = params.rC;

rpar = (rC)/(1+rC/Rload);
A1 = [-(rpar+rL)/L -1/(1+rC/Rload)/L; ...

1/(1+rC/Rload)/C -1/(Rload+rC)
/C];

b1 = [ 1/L rpar/L -1/(1+Rload/rC)/L;
0 -1/(1+rC/Rload)/C 1/(Rload+rC)/C];

c1 = [1 0; rpar 1/(1+rC/Rload)];

A0 = A1;
b0 = [ 0 rpar/L -1/(1+Rload/rC)/L;

0 -1/(1+rC/Rload)/C 1/(Rload+rC)/C];
c0 = c1;
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case 'boost'
L = params.L;
rL = params.rL;
C = params.C;
rC = params.rC;

rpar = (rC)/(1+rC/Rload);
A1 = [-rL/L 0; 0 -1/(Rload+rC)/C];
b1 = [1/L 0 0;

0 -1/(1+rC/Rload)/C 1/(Rload+rC)/C];
c1 = [1 0; 0 1/(1+rC/Rload)];

A0 = [-(rpar+rL)/L -1/(1+rC/Rload)/L; ...
1/(1+rC/Rload)/C -1/(Rload+rC)
/C];

b0 = [ 1/L rpar/L -1/(1+Rload/rC)/L;
0 -1/(1+rC/Rload)/C 1/(Rload+rC)/C];

c0 = [1 0; rpar 1/(1+rC/Rload)];

case 'buckboost'
L = params.L;
rL = params.rL;
C = params.C;
rC = params.rC;

rpar = (rC)/(1+rC/Rload);
A1 = [-rL/L 0; 0 -1/(Rload+rC)/C];
b1 = [ 1/L 0 0;

0 -1/(1+rC/Rload)/C 1/(Rload+rC)/C];
c1 = [1 0; 0 1/(1+rC/Rload)];

A0 = [-(rpar+rL)/L -1/(1+rC/Rload)/L; ...
1/(1+rC/Rload)/C -1/(Rload+rC)
/C];

b0 = [ 0 rpar/L -1/(1+Rload/rC)/L;
0 -1/(1+rC/Rload)/C 1/(Rload+rC)/C];

c0 = [1 0; rpar 1/(1+rC/Rload)];

case 'custom'
A1 = params.A1;
A0 = params.A0;
b1 = params.b1;
b0 = params.b0;
c1 = params.c1;
c0 = params.c0;

end;

% **************************************
% Steady-state OP determination --- Continuous
% **************************************
X = -((D*A1+Dprime*A0)^-1)*(D*b1+Dprime*b0)*[Vg;Iload;Vload];
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% **************************************
% Steady-state OP determination --- Discrete
% **************************************
dim = min(size(A1));
A1i = A1^-1;
A2i = A0^-1;
Xdown = ((eye(dim)-expm(A1*D*Ts)*expm(A0*Dprime*Ts))^-1)*...

(-expm(A1*D*Ts)*A2i*(eye(dim)-expm(A0*Dprime*Ts))*
b0+...
-A1i*(eye(dim)-expm(A1*D*Ts))*b1)*[Vg;Iload;Vload];

Xup = expm(A0*Dprime*Ts)*Xdown-A2i*...
(eye(dim)-expm(A0*Dprime*Ts))*b0*...

[Vg;Iload;Vload];

Fdown = (A1-A0)*Xdown + (b1-b0)*[Vg;Iload;Vload];
Fup = (A1-A0)*Xup + (b1-b0)*[Vg;Iload;Vload];

% **************************************
% Small-signal model---Continuous
% **************************************
A = D*A1+Dprime*A0;
F = (A1-A0)*X + (b1-b0)*[Vg;Iload;Vload];
C = D*c1+Dprime*c0;

sys = ss(A,F,C,0);
Ws = tf(sys);

% ********************************
% Small-signal model---Discrete
% ********************************
switch modulator

case 'te'
Phi = expm(A0*(Ts-td))*expm(A1*D*Ts)*expm(A0*(td-D*

Ts));
gamma = expm(A0*(Ts-td))*Fdown*Ts;
delta = c0;

case 'le'
Phi = expm(A1*(Ts-td))*expm(A0*Dprime*Ts)*expm(A1*

(td-Dprime*Ts));
gamma = expm(A1*(Ts-td))*Fup*Ts;
delta = c1;

case 'sym'
Phi = expm(A0*Dprime*Ts/2)*expm(A1*D*Ts)*expm(A0*D

prime*
Ts/2);

gamma = (Ts/2)*expm(A0*Dprime*Ts/2)*(Fdown + expm(A1*D*
Ts)

*Fup);
delta = c0;
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end;

sys = ss(Phi,gamma,delta,0,Ts);
Wz = tf(sys);

return;

3.5 SUMMARY OF KEY POINTS

• In the discrete-time modeling approach, the nonlinear sampled dynamics of
the converter is linearized around the system’s operating point. The result
is a state-space discrete-time model of the power converter, which correctly
accounts for sampling effects and delays present in the feedback loop.

• When the small-aliasing approximation introduced in Section 2.6.2 is justified,
the effect of the total loop delay on the system’s phase response can be approx-
imated by attributing a transport delay to the standard averaged small-signal
models. In other cases, no simple corrections are available to improve predic-
tions of the averaged small-signal models, and digital control design must be
based on discrete-time models that correctly consider sampling, aliasing, and
delay effects.

• For time-invariant topologies, such as the Buck converter, the exact
discrete-time model can be obtained via impulse-invariant discretization of the
conventional averaged small-signal model, provided that the overall delay is
included as an equivalent transport delay.

• Discrete-time modeling can be straightforwardly implemented via Matlab®

scripting.





C H A P T E R 4
DIGITAL CONTROL

The discrete-time modeling framework developed in Chapter 3 enables the
direct-digital z-domain synthesis of the compensator transfer function based on
the familiar frequency-domain specifications in terms of the desired crossover
frequency, phase margin, and gain margin. This chapter is devoted to this subject.

The compensator design is presented in Section 4.1. Among many textbook
approaches for direct-digital compensator design, the one emphasized here is based
on the so-called bilinear transform, an effective tool for direct z-domain synthesis.
The approach is outlined in Section 4.1.1, followed by a discussion of the digital
proportional-integral-derivative (PID) compensator in Section 4.1.2. A number of
design examples are then presented in Section 4.2, and closed-form expressions for
the determination of the compensator coefficients are worked out analytically. In the
design practice, it is often necessary to evaluate the impact of disturbances, such as
input voltage or load current variations, acting on the closed-loop system. Section 4.3
is devoted to finding the transfer functions relevant for such evaluations in digitally
controlled converters. Finally, Section 4.4 addresses important practical issues and
mitigation strategies related to control saturation, when the closed-loop system is
exposed to large-signal transients.

Practical application of the design methods developed in this chapter is best
and more rapidly performed in the Matlab® design environment. Systematic Matlab®

scripting allows the designer to bypass the rather lengthy calculations characterizing
digital design, without losing analytical insights. Because of its practical importance,
throughout this chapter, Matlab®-aided design is emphasized and developed alongside
the analytical formulation.

4.1 SYSTEM-LEVEL COMPENSATOR DESIGN

The objective of a digital compensator design procedure is to determine the com-
pensator z-domain transfer function Gc(z) so that the closed-loop system meets cer-
tain design specifications. The approach developed in this section follows the usual
frequency-domain approach where the compensator transfer function is shaped so
that the system loop gain T (z) achieves a target control bandwidth specification, with
desired stability margins.

Digital Control of High-Frequency Switched-Mode Power Converters, First Edition.
Luca Corradini, Dragan Maksimović, Paolo Mattavelli, and Regan Zane.
© 2015 The Institute of Electrical and Electronics Engineers, Inc. Published 2015 by John Wiley & Sons, Inc.
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T (z) − ûy(z)
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Figure 4.1 Definition of the z-domain loop gain T (z).

Similar to the loop gain in analog controlled converters addressed in
Section 1.3.3, the z-domain loop gain T (z) of a single-loop digitally controlled
system, such as the one sketched in Fig. 4.1, is defined as

T (z) � −
ûy(z)
ûx(z)

= Gc(z)HGvu(z) . (4.1)

Likewise, the uncompensated loop gain Tu(z) corresponds to the system loop gain
with a unity compensation Gc(z) = 1,

Tu(z) = HGvu(z). (4.2)

Note that a wide-bandwidth sensing transfer function is assumed in Fig. 4.1, modeled
by a static gain H .

A number of textbook approaches exist to synthesize Gc(z) [7]. The one
discussed here relies on the bilinear transform and belongs to a broader class
of mapping-based approaches. The uncompensated loop gain Tu(z), as well as
the to-be-designed compensator transfer function Gc(z), is first mapped into an
equivalent continuous-time p-domain, where the actual design is performed. The
compensator designed in p-domain is then back-mapped into the z-domain and
implemented in the digital controller. As the actual design occurs in terms of the
equivalent continuous-time system, all the techniques familiar to the analog designer
can be reused without conceptual difficulties. Nevertheless, as the design starts and
ends with exact z-domain transfer functions, including the converter discrete-time
models developed in Chapter 3, the approach is not subject to any of the limitations
associated with the use of averaged models discussed in Section 2.6.1.

4.1.1 Direct-Digital Design Using the Bilinear Transform
Method

The bilinear map,

z(p) =
1 + p

Ts

2

1 − p
Ts

2

, (4.3)
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provides a way to move from z-domain to an equivalent continuous-time p-domain,
so that the digital compensator design can be performed entirely using the familiar
Laplace-domain frequency response techniques. The inverse map,

p(z) =
2
Ts

1 − z−1

1 + z−1 , (4.4)

then allows the design to be moved back into the z-domain.
On the basis of (4.3), mapping of a z-domain transfer function G(z) into the

p-plane results in a p-domain function G′(p) defined as

G′(p) � G(z(p)). (4.5)

The bilinear map has the following properties:

1. If the transfer function Gc(z) is rational in the variable z, its transform G′
c(p) =

Gc(z(p)) is rational in the variable p.

2. The unit disk |z| < 1 is mapped into the left half-plane �[p] < 0, whereas
the unstable portion of the z-plane |z| > 1 is mapped into the right half-plane
�[p] > 0.

3. As illustrated in Fig. 4.2, the unit circle z = ejωTs is mapped into the imaginary
axis p = jω′:

z = ejωTs → p = jω′, (4.6)

where ω and ω′ represent the z-domain and p-domain angular frequencies,
respectively. The relationship between ω and ω′ is given by

ω′ =
2
Ts

tan
(
ω

Ts

2
)
. (4.7)
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Figure 4.2 Bilinear mapping between the z-domain and the p-domain.



122 CHAPTER 4 DIGITAL CONTROL

From the above-mentioned properties, it follows that the p-plane has the charac-
teristics of a Laplace domain and that G′

c(p) can be interpreted as the transfer function
of a continuous-time system whose frequency response G′

c( jω′) is related to the orig-
inal frequency response Gc(e

jωTs) by

G′
c(jω

′) = Gc(e
jωTs), (4.8)

where ω′ and ω are related through (4.7). Notably, as the z-domain frequency axis
z = ejωTs is mapped into the p-domain frequency axis p = jω′, the system frequency
response is preserved by the transformation in both magnitude and phase. The fre-
quency axis, however, undergoes a distortion as expressed by (4.7), which is com-
monly referred to as frequency warping. From (4.7), the distortion amounts to 1% at
ω = ωs/18 and 10% at ω = ωs/6.

Application of the bilinear transform allows formulation of the digital design
problem in the equivalent continuous-time domain and applications of the usual con-
cepts and techniques commonly used in analog compensator designs. The result is
then brought back to the z-domain by application of the inverse map (4.4). The
frequency distortion can be easily compensated for by suitably prewarping all the
specifications expressed in terms of a z-domain frequency.

It is important to note that frequency ω in the z-domain represents the actual
frequency of interest in the system. All frequency-domain specifications, for example,
crossover frequency or control-loop bandwidth, are expressed in terms of ω. On the
other hand, the p-domain frequency ω′ is distorted according to (4.7). This is why a
new symbol p, as opposed to the standard symbol s, is used in the bilinear mapping
for the equivalent continuous-time Laplace domain.

The design flow based on the bilinear transform method can now be summa-
rized as follows:

1. Start with a z-domain model Tu(z) of the uncompensated loop gain obtained
via the discrete-time modeling method discussed in Chapter 3 and identify a
template structure Gc(z) of the compensator to be designed, for example, a
digital PID compensator discussed in Section 4.1.2.

2. Apply (4.3) to both Tu(z) and Gc(z) and obtain the equivalent p-domain for-
mulations T ′

u(p) and G′
c(p).

3. Prewarp all the z-domain frequency specifications ωspec into corresponding
p-domain specifications ω′

spec ,

ω′
spec =

2
Ts

tan
(
ωspec

Ts

2
)
. (4.9)

4. Design G′
c(p) in the p-domain according to well-known approaches from

continuous-time feedback theory, for example, as described in [1] in the
context of analog control of switched-mode power converters.

5. Map G′
c(p) back in the z-domain via (4.4) to obtain Gc(z).

With a design of Gc(z) completed, one can proceed to the compensator imple-
mentation, which is addressed in Chapter 6.
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4.1.2 Digital PID Compensators in the z- and the p-Domains

The PID compensator is an important case, as it presents a suitable template in
many practical designs. Two possible digital PID realizations, Euler and Tustin,
are obtained from a continuous-time PID via discretization in Section 2.3. In this
section, an opposite direction is taken, starting from a well-defined PID structure
as a given template in the z-domain, without necessarily thinking of it as the result
of a discretization process. The particular realization considered here, because
of its inherent simplicity, is shown in Fig. 4.3. This is the Euler structure in its
parallel—sometimes referred to as additive or noninteracting—form governed by
the equations

up[k] = Kpe[k],

ui[k] = ui[k − 1] + Kie[k],

ud[k] = Kd(e[k] − e[k − 1]),

u[k] = up[k] + ui[k] + ud[k].

(4.10)

The compensator coefficients Kp, Ki, and Kd are the proportional, integral, and
derivative gains, respectively.

Direct Z-transform of (4.10) yields the standard additive form of the digital
PID transfer function

GPID(z) = Kp +
Ki

1 − z−1 + Kd(1 − z−1). (4.11)

This transfer function, shown in a block-diagram form in Fig. 4.3, has two poles
located at z = 1 and z = 0 and two zeros determined by the three coefficients
(Kp,Ki,Kd).

u[k]

e[k]

ud[k]

up[k]

ui[k]

+

+

+−

Ki

Kp

Kd

z−1

z−1

Figure 4.3 Block diagram of a digital PID compensator in the parallel form.
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Once mapped into the p-domain via (4.3), (4.11) becomes

G′
PID(p) = Kp

︸︷︷︸
Proportional term

+
Ki

Ts

1 +
p

ωp

p

︸ ︷︷ ︸
Integral term

+ KdTs

p

1 +
p

ωp︸ ︷︷ ︸
Derivative term

, (4.12)

where

ωp � 2
Ts

=
ωs

π
. (4.13)

Figure 4.4 shows the asymptotic Bode plots of G′
c(p), highlighting the proportional,

integral, and derivative contributions.
Frequency ωp, which originates from the finite switching frequency of the con-

verter, is the zero frequency in the integral term, and the pole frequency in the deriva-
tive term of G′

c(p). The reason such pole and zero appear in the p-domain is that
the Nyquist angular frequency ωN = ωs/2 = π/Ts, represented in the z-plane by
the z = −1 point, is mapped to infinity by (4.4). As both the integral and the deriva-
tive terms have finite gains at the Nyquist rate in the z-domain, they must have finite
gains at ω′ = +∞ in the p-domain. One can easily see that this is indeed the case in
(4.12). Observe that ωp is located at slightly less than one-third of the switching rate
ωs, which is relatively high compared to the crossover frequencies in typical control
loops around switched-mode converters.

ωPI ωPD ωp = 2
Ts

ω

Ki

Ts

1 + p
ωp

p

KdTs
p

1 + p
ωp

Kp

|GPID(p)|

≈ ωKdTs

≈ Kp

≈ Ki

ωTs

≈ 2Kd

ωPI

ωPD ωp
ω

GPID(p)

+90°

−90°

Figure 4.4 Asymptotic Bode plots of a digital PID in the p-domain.
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For design purposes, it is useful to work with the multiplicative form of (4.12)

G′
PID(p) = G′

PI∞

(
1 +

ωPI

p

)
︸ ︷︷ ︸

PI

G′
PD0

1 +
p

ωPD

1 +
p

ωp︸ ︷︷ ︸
PD

, (4.14)

with G′
PI∞ > 0 and G′

PD0 > 0. Once the p-domain parameters (G′
PI∞, ωPI , G

′
PD0,

ωPD) are determined in the design process, the z-domain PID gains Kp, Ki, and Kd

are calculated as

Kp = G′
PI∞G′

PD0

(
1 +

ωPI

ωPD
− 2ωPI

ωp

)
,

Ki = 2G′
PI∞G′

PD0
ωPI

ωp

,

Kd =
G′

PI∞G′
PD0

2

(
1 − ωPI

ωp

) (
ωp

ωPD
− 1

)
.

(4.15)

For the above-mentioned equations to yield valid PID coefficients Kp ≥ 0, Ki ≥ 0,
and Kd ≥ 0, one must have

0 ≤ ωPI ≤ ωp,

0 ≤ ωPD ≤ ωp.
(4.16)

Letting Kd = 0 in (4.12) yields a simpler proportional-integral (PI)—or lag—
compensation

G′
PI (p) = Kp +

Ki

Ts

1 +
p

ωp

p

= G′
PI∞

(
1 +

ωPI

p

)
, (4.17)

where the parameters of the parallel and multiplicative forms are related by

Kp = G′
PI∞

(
1 − ωPI

ωp

)
,

Ki = 2G′
PI∞

ωPI

ωp

.

(4.18)

These equations are special cases of (4.15) when ωPD → ωp and G′
PD0 → 1.
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In another limiting case where the integral gain is zero, the proportional-
derivative (PD)—or lead—compensator is obtained,

G′
PD(p) = Kp + KdTs

p

1 +
p

ωp

= G′
PD0

1 +
p

ωPD

1 +
p

ωp

,

(4.19)

with
Kp = G′

PD0,

Kd =
G′

PD0

2

(
ωp

ωPD
− 1

)
.

(4.20)

This form is a limit case of (4.15) when ωPI → 0 and G′
PI∞ → 1.

4.2 DESIGN EXAMPLES

The objectives in this section are to illustrate applications of the compensator design
flow presented in Section 4.1 in several practical examples.

4.2.1 Digital Voltage-Mode Control of a Synchronous Buck
Converter

The first example considered is the example of digital voltage-mode control of
the synchronous buck converter introduced in Section 2.6. The converter exact
discrete-time model and the control-to-output voltage transfer function Gvu(z) are
derived in Section 3.3.4. The magnitude and phase Bode plots of the uncompensated
loop gain of the system,

Tu(z) = HGvu(z), (4.21)

are shown in Fig. 4.5. The design specifications are to achieve a crossover frequency
equal to fc = fs/10 = 100 kHz with a phase margin ϕm = 45◦. From the Bode plots
in Fig. 4.5, it is clear that a suitable phase boost must be introduced by the control
action. The PID compensator template is selected for the compensator Gc(z).

Following the approach similar to the standard analog control design exempli-
fied in Section 1.5.1, the compensator design is carried out in two successive steps:
first, a PD compensator is designed that achieves the target crossover frequency and
phase margin. Such PD compensator has two parameters and is uniquely determined
by the fc and ϕm specifications. Secondly, an integral action is introduced in the
compensation. The rationale behind this two-step approach is that the proportional
and derivative terms exploit their action at frequencies close to fc, whereas the main
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Figure 4.5 Synchronous Buck converter example: Bode plots of the uncompensated loop
gain Tu(z).

purpose of the integral term is to increase the low-frequency gain and thus ensure
good static regulation.

The overall PID transfer function in the p-domain has the general form (4.14).
The crossover frequency specification in the p-domain becomes, according to (4.9),

ω′
c =

2
Ts

tan
(

ωc

Ts

2

)
≈ 2π . (103.4 kHz). (4.22)

As expected, ω′
c ≈ ωc. Furthermore, one has

ωp =
2
Ts

≈ 2π . (318 kHz). (4.23)

Following the method presented in Section 4.1.1, the p-domain transform
T ′

u(p) of Tu(z) should be evaluated first. It should be noted that the magnitude
and phase values of Tu(z) are required only at the target crossover frequency ωc.
Therefore, it is not necessary to perform the formal step of the z-to-p mapping of the
entire uncompensated loop gain. In this example, the magnitude and the phase of Tu
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at ωc—or, equivalently, the magnitude and the phase of T ′
u at ω′

c—are

|Tu(ejωcTs)| = |T ′
u(jω′

c)| ≈ 63.1 . 10−3 ⇒ −24 dB,

∠Tu(ejωcTs) = ∠T ′
u(jω′

c) ≈ −199◦.
(4.24)

as illustrated in Fig. 4.5. The design objectives for the PD portion of the compensation
can be expressed by the complex constraint that requires the T ′(jω′

c) to have unity
magnitude and −π + ϕm phase at ω′

c,

T ′(jω′
c) � G′

PD(jω′
c)T

′
u(jω′

c) = ej(−π+ϕm). (4.25)

The complex constraint (4.25) corresponds to the magnitude and phase constraints

|T ′
u(jω′

c)||G′
PD (jω′

c)| = 1, (4.26)

∠T ′
u(jω′

c) + ∠G′
PD(jω′

c) = −π + ϕm. (4.27)

From (4.27), using (4.19), one has

∠T ′
u(jω′

c) + arctan
(

ω′
c

ωPD

)
− arctan

(
ω′

c

ωp

)
= −π + ϕm, (4.28)

which yields

ωPD =
ω′

c

tan
(

ϕm − ϕm,u + arctan
(

ω′
c

ωp

)) , (4.29)

where the uncompensated phase margin

ϕm,u � π + ∠T ′
u(jω′

c) = π + ∠Tu(ejωcTs) (4.30)

represents the system phase margin when a purely proportional compensation is
designed to obtain the crossover frequency fc.

From (4.20), a valid solution Kd > 0 is found if and only if 0 < ωPD < ωp.
Applying this constraint to (4.29) yields an upper and a lower bound for the achievable
phase margin ϕm,

ϕm,u < ϕm < ϕm,u +
π

2
− arctan

(
ω′

c

ωp

)
. (4.31)

The phase margin bounds (4.31) have a straightforward interpretation. The
lower bound for ϕm is equal to ϕm,u, which corresponds to the case when the com-
pensation would not require a derivative action. The upper bound for ϕm expresses
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the maximum achievable phase boost by the digital PD compensator. If a phase mar-
gin greater than the upper bound is requested, it would not be possible to meet such
specification using a valid, realizable PD compensator, and one would have to look
for more complex compensator structures. Note that the effect of ωp appears in the
upper bound due to the phase-lagging effect of ωp.

For the synchronous Buck converter under study, ∠T ′
u(jω′

c) ≈ −199◦ and
therefore ϕm,u ≈ −19◦, while arctan(ω′

c/ωp) = 18◦. Condition (4.31) becomes

−19◦ < ϕm < 53◦, (4.32)

which implies that the target ϕm = 45◦ specification can be met. A valid PD com-
pensation for the system then exists. From (4.29), ωPD is equal to

ωPD = 2π . (14.9 kHz). (4.33)

The PD gain G′
PD0 is determined from the magnitude constraint (4.26),

G′
PD0 =

1
|T ′

u(jω′
c)|

√
1 +

(
ω′

c

ωp

)2

√
1 +

(
ω′

c

ωPD

)2
, (4.34)

which yields
G′

PD0 = 2.37. (4.35)

Next, an integral action is introduced, the purpose of which is to null the
steady-state regulation error and, more generally, increase the loop gain at low
frequencies and therefore improve the in-band disturbance rejection.

The PI-related zero ωPI should not appreciably alter the crossover frequency
and the phase margin attained by the PD compensation. Similarly, the high-frequency
PI gain G′

PI∞ should not alter the loop gain magnitude in the neighborhood of ωc.
Choose then ωPI to be one-twentieth of the crossover angular frequency ωc,

ωPI = 2π . (5 kHz), (4.36)

and
G′

PI∞ = 1. (4.37)

The PID compensation transfer function (4.14) is now completely defined in
p-domain, with

G′
PI∞ = 1,

G′
PD0 = 2.37,

ωPI = 2π . (5 kHz),

ωPD = 2π . (14.9 kHz).

(4.38)
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Finally, the z-domain PID gains are obtained from (4.15),

Kp = 3.09,

Ki = 74.52 . 10−3,

Kd = 23.8.

(4.39)

Figure 4.6 illustrates the Bode plots of the final compensator transfer function
before and after the introduction of the integral term, whereas Fig. 4.7 reports both
the final compensated loop gain and the loop gain with PD compensation only. As
expected, both the crossover frequency and the phase margin are essentially unaltered
after the integral term is included, whereas the low-frequency magnitude of the loop
gain is substantially improved. As a verification, Fig. 4.7 also reports the simulated
system loop gain, obtained following the Middlebrook’s injection approach [78], sim-
ilar to the simulation performed in the analog controlled converter in Section 1.5.1.
Figure 4.8 depicts the setup used to determine the z-domain loop gain and verify
the modeling and design results by simulation. Note that a discrete-time perturba-
tion upert [k], sampled at the converter switching frequency, is used in Fig. 4.8, rather
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Figure 4.6 Synchronous Buck converter example: Bode plots of the compensator transfer
function Gc(z): proportional-derivative (PD) part (dashed line) and the overall
proportional-integral-derivative (PID) compensator (solid line).
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Figure 4.8 Synchronous Buck converter example: the setup for finding the z-domain loop
gain T (z) by simulation, which emulates operation of a network analyzer.
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Figure 4.9 Synchronous Buck converter example: 2.5 A ↔5 A step-load response.

than a continuous-time sinusoidal perturbation. Figure 4.9 illustrates the simulated
closed-loop response of the converter following a 5 to 2.5 A step-up/step-down load
current transient. An expanded view of the step-up case is reported in Fig. 4.10. The
simulations are carried out according to the timing diagram of Fig. 3.4 and there-
fore account for the total delay of the digital control loop. Amplitude quantization,
on the other hand, is not modeled—effects of finite A/D and DPWM resolutions are
discussed in Chapter 5.

The following inset provides the Matlab® instructions required to implement
the PID design described earlier.

�

�

�

�
Inset 4.1 – PID Compensator Design

Assume the transfer function object Tuz has been calculated (refer to Inset 3.3) and
that variables wc and mphi represent the target crossover angular frequency and phase
margin, respectively. The following code implements the design of the PID compen-
sator according to equations (4.29) and (4.36).

% Target crossover frequency and phase margin
wc = 2*pi*100e3;
phm = (pi/180)*45; % In radians
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% Magnitude and phase of Tuz at the target crossover frequency
[m,p] = bode(Tuz,wc);
p = (pi/180)*p;
% Prewarping on wc
wcp = (2/Ts)*tan(wc*Ts/2);
% PD Design
wp = 2*pi*fs/pi;
pw = atan(wcp/wp);
wPD = 1/(tan(-pi+mphi-p+pw)/wcp)
GPD0 = sqrt(1+(wcp/wp)^2)/(m*(sqrt(1+(wcp/wPD)^2)))
% PI zero and high-frequency gain
wPI = wc/20;
GPIinf = 1;
% Proportional, Integral and Derivative Gains
Kp = GPIinf*GPD0*(1+wPI/wPD-2*wPI/wp);
Ki = 2*GPIinf*GPD0*wPI/wp;
Kd = GPIinf*GPD0/2*(1-wPI/wp)*(wp/wPD-1);
% PID Transfer function
z = tf('z',Ts);
Gcz = Kp + Ki/(1-z^-1) + Kd*(1-z^-1);
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Figure 4.10 Synchronous Buck converter example: expanded view of the 2.5 A→5 A
step-load response: (a) inductor current and (b) output voltage.
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4.2.2 Digital Current-Mode Control of a Boost Converter

The Boost converter with digital current-mode control introduced in Section 3.2.2
is reported in Fig. 4.11 for convenience. The system parameters are listed in
Table 1.3, the same as in the analog current-mode control example in Section 1.5.2.
Modeling of the Boost converter, including a derivation of the control-to-inductor
current transfer function Giu(z) using the discrete-time modeling approach, is
presented in Section 3.2.2. Recall that a symmetrical PWM carrier is employed, with
sampling instants located at the midpoints of the turn-off intervals. As discussed in
Section 2.2.1, this enables sampling of the true average value of iL(t).

The Bode plots of the uncompensated current loop gain Tu(z),

Tu(z) = RsenseGiu(z), (4.40)

are illustrated in Fig. 4.12. Not surprisingly, the phase response remains
well-behaved, only mildly lagging below −90◦ due to the delays in the control loop.
A PI controller is therefore sufficient to compensate the system dynamics.

With the PI compensation designed for an fc = fs/10 = 10 kHz crossover fre-
quency and ϕm = 50◦ phase margin, the Bode plots of the compensated loop gain
T (z) and the values obtained by simulations (for verification purposes) are superim-
posed in Fig. 4.12.

Design of the PI compensator proceeds along the same lines as in
Section 4.2.1, except that a unique solution is found given that the two design
constraints (crossover frequency and phase margin) are used to determine the two
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Figure 4.11 Boost digital current-mode control.
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Figure 4.12 Boost converter example: Bode plots of the uncompensated loop gain Tu(z)
and the loop gain T (z).

parameters of the PI compensator (the proportional and the integral gain). In this
example, ωp = 2π . (31.8 kHz) and ω′

c ≈ 2π . (10.3 kHz).
First, using (4.40), express the magnitude and phase of the uncompensated loop

gain at the desired crossover frequency as

|Tu(ejωcTs)| = |T ′
u(jω′

c)| ≈ 1.23 ⇒ 1.78 dB,

∠Tu(ejωcTs) = ∠T ′
u(jω′

c) ≈ −108◦.
(4.41)

The uncompensated phase margin ϕm,u, defined as in (4.30), equals ϕm,u = 72◦.
Consider next the PI transfer function in the p-domain, as per (4.17),

G′
PI (p) = G′

PI∞

(
1 +

ωPI

p

)
, (4.42)

and impose the complex design constraint

T ′(jω′
c) � G′

PD(jω′
c)T

′
u(jω′

c) = ej(−π+ϕm). (4.43)

Solving for ωPI and G′
PI∞ yields

ωPI = ω′
c tan

(
ϕm,u − ϕm

)
, (4.44)
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G′
PI∞ =

1
|T ′

u(jω′
c)|

1√
1 +

(
ωPI

ω′
c

)2
. (4.45)

Notice again that bounds can be found to determine whether a valid PI compensator
exists. From (4.18), conditions Kp > 0 and Ki > 0 translate into 0 < ωPI < ωp.
Applied to (4.44), these constraints become

ϕm,u − arctan
(

ωp

ω′
c

)
< ϕm < ϕm,u , (4.46)

which states the fact that a PI compensation cannot boost the phase beyond ϕm,u, nor
can reduce the uncompensated phase margin below a certain limit. In the considered
example, arctan(ωp/ω′

c) ≈ 72◦. Hence

ϕm,u − arctan
(

ωp

ω′
c

)
= 0◦ < ϕm = 50◦ < ϕm,u = 72◦, (4.47)

and therefore a valid solution for the PI compensator exists,

ωPI ≈ 2π . (4.2 kHz) ,

G′
PI∞ ≈ 0.754 ⇒ −2.45 dB.

(4.48)

Finally, solving for the proportional and integral gains of the digital compensator via
(4.18) yields

Kp ≈ 0.6543,

Ki ≈ 0.2.
(4.49)

Figure 4.13 illustrates the simulated closed-loop response of the system to a
4.2 A→2.1 A step of the current setpoint, corresponding to a 500 W→250 W power
transient. The transient response is consistent with the frequency-domain design spec-
ifications.

Various other approaches to digital current-mode control have been discussed
in the literature, including predictive current-mode control [135, 136] and digital
current-mode control based on low-resolution current sensing [137].

4.2.3 Multiloop Control of a Synchronous Buck Converter

In analog controlled dc–dc converters, a multiloop control approach is often
applied, where a wide-bandwidth current control loop is nested inside an outer,
lower-bandwidth loop regulating the output voltage. Advantages of this approach
include the ability to directly control and limit the current during transients as a
protection feature, as well as the ability to ensure current sharing in systems where
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Figure 4.13 Boost converter example: 500 W→250 W step reference response.
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Figure 4.14 Digital multiloop control of a synchronous Buck converter.

multiple converters are operated in parallel. Furthermore, compensation of the
system is overall less critical and more robust than in the pure voltage-mode control
scheme.

A digital multiloop controller of the synchronous buck converter examined pre-
viously is shown in Fig. 4.14. The converter is driven by a symmetrical digital PWM
modulator, and both the inductor current and the output voltage are sampled at the
carrier peak, that is, at the middle of the turn-off interval. For the inductor current,
this implies that a digital average current-mode control of iL(t) is implemented. It is
assumed that a timing diagram such as the one illustrated in Fig. 3.11 holds for this
system as well, with the same constraints regarding control calculations and conse-
quent duty cycle limitation already discussed in Section 4.2.2.

As reported in Fig. 4.14, the inner control loop regulating the inductor current
receives its setpoint iref [k] from the voltage loop regulator. The basic idea behind
multiloop control is to decouple the dynamics of current from the voltage by making
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Figure 4.15 Small-signal block diagram of the digital multiloop control.

the current control loop much faster. This philosophy directly reflects upon the design
procedure, so that the current loop design and the voltage loop design are carried out
in a two-step sequence, rather than simultaneously.

The equivalent small-signal block diagram of the control system is illustrated
in Fig. 4.15. Consider the current loop compensator design first. Assuming that the
voltage loop is open, the current loop gain Ti(z) is

Ti(z) � −
ûy(z)
ûx(z)

= Gc,i(z)HiGiu(z), (4.50)

where Hi is the inductor current sensing gain and Gc,i(z) is the current loop compen-
sator transfer function to be designed. It is assumed that the sensing gain is normalized
to Hi = 1. The control-to-inductor current transfer function Giu(z) can be obtained
straightforwardly from the converter models derived in Section 3.2.1. The Bode plots
of the uncompensated loop gain Tu,i(z) = HiGiu(z), reported in Fig. 4.16, exhibit
well-behaved dynamics up to a significant fraction of the Nyquist rate, a situation
that only differs from the familiar analog control case by the additional phase lag
associated with the overall loop delay

td = tDPWM =
Ts

2
= 500 ns. (4.51)

Below resonance, Tu,i(z) has a slope of 20 dB/decade as a result of a zero located in
close proximity of z = 1. Notice that the sampling strategy considered in this example
is such that the sampled current very closely follows the actual average current. As a
result, the low-frequency behavior of Giu(z) accurately resembles its s-domain coun-
terpart Gid(s), and a zero at dc is predicted.1 On the basis of the above-mentioned

1A closer examination of the location of the zero shows a value slightly different from z = 1. This is due to
the fact that the inductor current waveform, regardless of the sampling strategy, is never exactly triangular,
and therefore the sampled current slightly departs from the average current. The z-domain model correctly
accounts for this aliasing effect, which nonetheless remains unimportant from a practical standpoint.
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Figure 4.16 Multiloop control example: Bode plots of the current loop gain.

considerations, a PI compensation

Gc,i(z) = Kp,i +
Ki,i

1 − z−1 (4.52)

can be designed for the inner current loop. Following the same steps as in the Boost
current-mode controller of Section 4.2.2 and assuming a crossover frequency ωc,i =
2π . (160 kHz) and a phase margin ϕm,i = 50◦, one derives the parameters Kp,i and
Ki,i of the current loop compensator,

Kp,i ≈ 0.1637,

Ki,i ≈ 0.0468.
(4.53)

The Bode plots of the compensated current loop gain Ti(z) are also reported in
Fig. 4.16. The finite loop gain value in the low-frequency range is due to the can-
cellation between the PI integrator pole and the zero of Tu,i(z) located at z ≈ 1. A
finite low-frequency loop gain is a rather common situation in average current-mode
controllers, which may be addressed by embedding a double integrator in the com-
pensator transfer function. In the multiloop control system considered here, however,
it is important to realize that any regulation error in the inner current loop is entirely
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offset by the outer voltage loop, which adjusts the current setpoint accordingly. For
this reason, the finite low-frequency current loop gain is not a concern.

Referring again to Fig. 4.15, the voltage loop gain is evaluated with the current
loop closed,

Tv(z) � −
îref ,y(z)

îref ,x(x)
= Gc,v(z)HvGvu(z)

Gc,i(z)
1 + Ti(z)

, (4.54)

where Gc,v(z) is the voltage loop compensator transfer function to be designed. In
this numerical example, it is assumed that Hv = 1. The uncompensated voltage loop
gain Tu,v(z) can be manipulated as follows:

Tu,v(z) = HvGvu(z)
Gc,i(z)

1 + Ti(z)

=
Hv

Hi

Gvu(z)
Giu(z)

Gc,i(z)HiGiu(z)
1 + Ti(z)

=
Hv

Hi

Gvu(z)
Giu(z)

Ti(z)
1 + Ti(z)

. (4.55)

This exact expression for Tu,v(z) includes the closed-loop dynamics of the inner cur-
rent loop expressed by the term Ti(z)/(1 + Ti(z)). In the limit of very large current
loop bandwidth—or, more precisely, for ω � ωc,i—one has

Ti(z)
1 + Ti(z)

≈ 1 ⇒ Tu,v(z) ≈ Hv

Hi

Gvu(z)
Giu(z)

. (4.56)

The quantity

Zvi(z) � Gvu(z)
Giu(z)

=
v̂o(z)
îL(z)

(4.57)

is not a converter transfer function because îL is not an input for the control sys-
tem. Nonetheless, it is a property of the converter, as it expresses the small-signal
relationship between the sampled inductor current and the sampled output voltage.
As the voltage loop crossover frequency ωc,v is usually selected so that ωc,v � ωc,i,
approximation (4.56) is usually well satisfied and the design of Gc,v(z) can be carried
out by taking

Tu,v(z) ≈ Hv

Hi

Zvi(z) (4.58)

as an approximate expression for Tu,v(z). Figure 4.17 illustrates the exact Bode
plots of Tu,v(z) along with the approximation (4.58). Not surprisingly, the frequency
response of Tu,v(z) resembles that of a capacitive impedance 1/sC.
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Figure 4.17 Multiloop control example: Bode plots of the voltage loop gain.

Given the frequency response of Tu,v(z), a digital PI compensator

Gc,v(z) = Kp,v +
Ki,v

1 − z−1 (4.59)

can be designed for ωc,v = 2π . (40 kHz) and ϕm,v = 50◦, leading to

Kp,v ≈ 33.81,

Ki,v ≈ 6.34.
(4.60)

The Bode plots of the compensated voltage loop gain Tv(z) = Gc,v(z)Tu,v(z) are
reported in Fig. 4.17 as well. The closed-loop transient performance of the designed
multiloop controlled converter is illustrated in Fig. 4.18, which shows the response
to a 0 A→5 A→0 A step-load sequence.

4.2.4 Boost Power Factor Corrector

Single-phase power factor correctors (PFCs) are ac–dc rectifiers widely employed as
input stages of electrical and electronic appliances, for the purpose of taking power
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Figure 4.19 Block diagram of a PFC system.

from the electric power grid ideally at unity power factor, and with low harmonic con-
tent of the input ac current. More details about operation, analysis, design, modeling,
and analog control of PFC rectifiers can be found in power electronics textbooks
[1, 2, 4, 5], with only a brief summary provided here before addressing discrete-time
modeling and digital control design details.

A general block diagram of a PFC rectifier is reported in Fig. 4.19, with
steady-state waveforms illustrating operating principles common to all PFC
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realizations illustrated in Fig. 4.20. Let vac(t) and iac(t) be the ac line voltage and
current, respectively. These are first rectified by a diode bridge and then processed
by a dc–dc converter controlled so as to (i) emulate a resistive load on the input side
and (ii) regulate the dc voltage Vo at the output, which supplies dc power P to a load
or a downstream power conversion stage modeled as a resistive load Ro.

With the objective of taking power from the ac line at unity power factor and
assuming sinusoidal ac line voltage, one has

vac(t) =
√

2Vac,rms sin(ωt)

iac(t) =
√

2
Vac,rms

Rem
sin(ωt),

(4.61)

where ω = 2π/T is the grid angular frequency and the emulated resistance Rem
related to the active power P demanded by the dc load. Assuming that PFC losses
can be neglected, we have

V 2
ac,rms

Rem
= P. (4.62)
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The rectified voltage vg(t) and current ig(t) at the input of the dc–dc stage are

vg(t) = |vac(t)| =
√

2Vac,rms | sin(ωt)|,

ig(t) = |iac(t)| =
√

2
Vac,rms

Rem
| sin(ωt)|.

(4.63)

Observe that vg(t) and ig(t) have a fundamental frequency equal to twice the line
frequency. One consequence of the above-mentioned equations is that the dc–dc
converter in the PFC rectifier must operate with a voltage conversion ratio M(t) =
Vo/vg(t) that varies over time with a period equal to one-half of the ac line period,

M(t) � Vo

vg(t)
=

Vo√
2Vac,rms

1
| sin(ωt)| , (4.64)

as illustrated in Fig. 4.20.
Examine now the instantaneous power p(t) absorbed from the line. It consists

of the dc term P plus a fluctuating component at twice the line frequency,

p(t) � vac(t)iac(t) = P (1 − cos 2ωt) = P︸︷︷︸
Active power

− P cos (2ωt)︸ ︷︷ ︸
Fluctuating power

. (4.65)

As the PFC output power is constant, the fluctuating power must be reactively
exchanged between the PFC and the grid. In other words, an energy storage
element—most commonly the output capacitor, as in Fig. 4.19—must be appro-
priately sized in order to filter the effect of the fluctuating power on the output
voltage ripple. The PFC output voltage vo(t) therefore consists of the regulated
dc component Vo, plus a small ripple at twice the line frequency originated by
the fluctuating power exchanged by the storage element. A simplified—although
accurate enough for practical design purposes—design equation for the energy
storage element based on the target peak-to-peak voltage ripple Δvo can be derived
from (4.65),

Δvo ≈ P

ωCVo

. (4.66)

On the other hand, in consequence of the large energy exchange between the PFC
converter and the energy storage element, current i(t) output by the dc–dc converter
exhibits a large ripple component at twice the line frequency, superimposed to the dc
current Io absorbed by the load. Under the small-ripple approximation for the output
voltage, one has

i(t) =
p(t)
vo(t)

≈ p(t)
Vo

= Io − Io cos (2ωt), (4.67)

which is also depicted in Fig. 4.20.
In a practical PFC implementation, the dc–dc converter introduces additional

harmonic components due to its switching activity. In this sense, the above-mentioned
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quantities must be interpreted as the averaged versions of the instantaneous signals
over the converter switching period Ts, that is,

p(t) → p(t),

ig(t) → ig(t),

vo(t) → vo(t),

i(t) → i(t).

(4.68)

The PFC control example discussed here is based on the Boost converter. A
block diagram of the digitally controlled Boost PFC is shown in Fig. 4.21, with the
system parameters given in Table 4.1. The power stage parameters are the same
as in the Boost dc–dc converter with digital current-mode control considered in
Section 4.2.2, which provides a starting point in the application of digital control
design principles to the PFC example.

In the case study scenario, the typical US household ac voltage (120 V, 60 Hz)
is rectified and elevated to supply a 380 V, 500 W dc load. At this power level, the
RMS input current and the dc output current are

Iac,rms =
P

Vac,rms
=

500 W
120 V

≈ 4.2 A,

Io =
P

Vo

=
500 W
380 V

≈ 1.3 A.

(4.69)

With the selected output capacitor, the expected peak-to-peak output voltage ripple
is, according to (4.66),

Δvo ≈ 16 V, (4.70)

TABLE 4.1 Boost PFC Example Parameters

Parameter Value

Input voltage RMS Vac,rms 120 V
Line frequency ω 2π . (60 Hz)
Output voltage Vo 380 V
Output power P 500 W
Switching frequency fs 100 kHz
Inductance L 500 μH
Inductor series resistance rL 20 mΩ
Filter capacitance C 220 μF
Output voltage sensing gain Hv 1 V/V
Current sensing gain Rsense 0.1 V/A
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or ≈ 4% of the dc value. The inductor peak-to-peak current ripple,

ΔiL =
vg

L
dTs ≤

√
2Vac,rms

fsL

(
1 −

√
2Vac,rms

Vo

)
≈ 1.88 A, (4.71)

has the maximum value occurring around the peak of the line voltage. The Boost
converter operates in CCM throughout the entire line cycle as long as [1]

Rem ≤ 2Lfs ⇔ P ≥ 144 W. (4.72)

The PFC digital controller considered here closely follows the well-known
multiplier-based analog implementation [1]. As shown in Fig. 4.21, it is a multiloop
control system with two distinct control loops:

• A wide-bandwidth current loop is employed to control the rectified current ig(t)
so as to closely follow the rectified input voltage waveshape vg(t), so that the
input port of the rectifier behaves as the emulated resistance Rem . A variable
setpoint vref [k] for the inner current loop is obtained by multiplying the rectified
voltage vg(t) by a controllable signal vcntrl ,

vref ,i [k] � kxvg[k]vcntrl , (4.73)
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where kx is a proportionality constant of the digital multiplier. The scale factor
between vg(t) and ig(t) represents the emulated resistance Rem , and its value
is determined by vcntrl . In steady-state one has vcntrl = Vcntrl . Assuming that
Rsenseig ≈ vref ,i due to the wide-bandwidth current loop, one has

Rsenseig ≈ kxvgVcntrl ⇒ Rem �
vg

ig
=

Rsense

kxVcntrl
, (4.74)

which yields the dependence of Rem on the voltage control command vcntrl .
Furthermore, plugging the above-mentioned equation into (4.62) yields

P = kx

V 2
ac,rms

Rsense
Vcntrl . (4.75)

Therefore, vcntrl directly controls the average power drawn from the line.

• A low-bandwidth voltage loop is established to regulate the converter output
voltage at a constant value Vref ,v . When the output voltage falls below Vref ,v ,
the voltage feedback increases vcntrl , forcing a higher ac power absorption and
restoring the regulation. The opposite mechanism occurs when the output volt-
age exceeds the desired setpoint. In this sense, the voltage loop acts as a power
balancing loop.

A large bandwidth separation between the fast current loop and the slow voltage
loop is essential to guarantee proper operation of the PFC system. The current loop
bandwidth fc,i is normally designed to be as large as possible, typical values being
around one-seventh to one-tenth of the converter switching rate fs. On the other hand,
an excessively rapid adjustment of Rem by the voltage loop would inevitably distort
the input current and ultimately compromise the power factor correction function.
The voltage loop bandwidth fc,v is typically limited to much less than twice the line
frequency. In summary,

fc,v︸︷︷︸
Voltage loop bandwidth

� 2f︸︷︷︸
Twice the line frequency

� fc,i︸︷︷︸
Current loop bandwidth

� fs︸︷︷︸
Switching frequency

.

(4.76)
One additional control provision, not shown in Fig. 4.21 but frequently adopted

in practical PFC implementations, is to make the multiplier gain kx inversely propor-
tional to the squared input RMS voltage V 2

ac,rms . Referred to as input voltage feed-
forward, this technique allows to suppress disturbances in vac(t) from the converter
feedback [1]. As the input voltage feedforward does not alter the control-to-output
dynamics of the converter, it is not considered in this example.

Consider first the design of the inner, wide-bandwidth current loop. The
purpose of the inner loop is simply to track the current setpoint vref ,i [k]. In this
regard, the modeling technique and the design approach are the same as for
the dc–dc case examined in Section 4.2.2. An additional issue to be addressed,
however, is that the converter input voltage vg(t) is now slowly varying between
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Figure 4.22 Boost PFC example: Bode plots of the current loop gain for three different Vg’s.

0 V and
√

2Vac,rms ≈ 170 V because of the variations in the ac line voltage. As the
fundamental frequency of vg(t) is 2f � fc,i, its motion is relatively slow compared
with the dynamics of the wide-bandwidth current loop. The variation of vg(t) is
therefore approximated as a quasi-static change of the converter operating point.
Figure 4.22 illustrates the current loop gain Ti(z), designed for fc,i = 10 kHz and
ϕm,i = 50◦ at the peak input voltage Vg = 170 V, together with the same loop
gain evaluated at two other intermediate values, Vg = 17 V and Vg = 85 V. In
plotting these latter two cases, the steady-state duty cycle D is recalculated to keep
Vo = 380 V. Small-signal-wise, under the quasi-static approximation, the change
in the operating point due to the change in vg(t) affects the low-frequency portion
of the current loop gain but keeps unaltered both the crossover frequency and the
phase margin. A high-frequency approximation of Ti(z), derived from (3.56), is
also depicted in Fig. 4.22 to illustrate that the crossover frequency and the phase
margin of Ti(z) can be designed independent from the value of vg(t).

2 In summary,
the design of the wide-bandwidth inner current loop involves the same design tools
and methodologies seen for the dc–dc case.

2It is important to mention that while this property holds for the Boost converter, it is not generally true
for other converter topologies.
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Consider now the problem of designing the low-bandwidth outer voltage loop
responsible for regulating the PFC output voltage. As anticipated, such loop acts on
the value of Rem by means of vcntrl in order to maintain the power balance between
the input and the output. In doing so, a dynamic response much slower than twice the
line frequency is desired not to excessively distort the input current.

In the framework of continuous-time modeling, the uncompensated dynam-
ics of the outer voltage loop is studied with the aid of the loss-free resistor (LFR)
model, illustrated in Fig. 4.23 [1]. Assuming the inner current loop operates ideally,
the input port of the converter behaves as a resistance Rem controlled by vcntrl . On
the other hand, the output port becomes a controlled power source, which transmits
to the output the average power absorbed from the line. Equations of the LFR are

vg(t) = Rem(vcntrl )ig(t),

vo(t)i(t) =
v2

g(t)
Rem(vcntrl )

.
(4.77)

The LFR model yields nonlinear, time-varying equations due to the nonlinearity of
the controlled power source element and due to the input voltage variation, which pro-
duces a power oscillation at twice the line frequency. To handle this, the LFR model
is first averaged over half the line period, an operation that removes the time-varying
nature of the equations in the same manner as the conventional averaging opera-
tion over a switching period is used to obtain a time-invariant nonlinear model of
a switched-mode converter. Denote with

vo(t) � 〈vo(t)〉T2L
(4.78)
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the output voltage averaged first over Ts, then over the half line period T2L � π/ω
(Fig. 4.24). Applying the above-mentioned averaging operation to the instantaneous
power p(t) removes the fluctuating term,

p(t) =
V 2

ac,rms

Rem(vcntrl (t))
= kx

V 2
ac,rms

Rsense
vcntrl (t). (4.79)

The averaged version of the LFR controlled power source is illustrated in Fig. 4.25.
This model is still nonlinear, but is time-invariant, and can be linearized around its
steady-state operating point to find the small-signal dynamics between the control
input vcntrl and the PFC output voltage.

In developing a digital version of the voltage regulation loop, the first item
to be addressed is sampling, which brings in the same issues already discussed in
Section 2.2.1. The main difference is that relevant harmonics responsible of alias-
ing effects are in this case those originating from the fluctuating component of the
instantaneous power p(t) at twice the line frequency and its multiples. Following the
considerations developed in Section 2.2.1, a suitable approach is to sample the PFC
output voltage at twice the line frequency. Denote then the sampled output voltage as

vo[n] � vo(t = nT2L), (4.80)

index n counting the number of half line periods T2L rather than the number of con-
verter switching periods. With this sampling strategy, one inherently eliminates the
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baseband spectral components originated by sampling, and the residual aliasing effect
only manifests at dc. Furthermore, because of the small ripple Δvo superimposed to
the output voltage, it is appropriate to invoke the small-aliasing approximation on
vo[n] and assume that the residual dc aliasing effects remain negligibly small as well.
In conclusion,

vo[n] ≈ vo(nT2L) . (4.81)

Qualitative spectra of the PFC output voltage vo(t), of its averaged version vo(t) and
of vo[n], are shown in Fig. 4.26.

The small-aliasing approximation (4.81) allows formulation of the
discrete-time dynamics of the uncompensated voltage loop as a discretization of its
continuous-time averaged dynamics. Start from the nonlinear equation governing
the LFR dynamics over half the line period. As shown in Fig. 4.25, one has

dvo

dt
=

1
C

(
i(t) − io(t)

)

=
1
C

(
p(t)
vo

− vo

Ro

)

= −vo(t)
RoC

+ kx

V 2
ac,rms

RsenseC

vcntrl (t)
vo(t)

.

(4.82)
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Integration of this equation from an arbitrary initial condition vo(0) yields3

vo(t) =

√
e−

2t
RoC v

2
o(0) + 2kx

V 2
ac,rms

RsenseC

∫ t

0
e−2 t−τ

RoC vcntrl (τ) dτ. (4.83)

This equation can be discretized in order to obtain the sampled nonlinear dynamics of
vo[n]. Considering that vcntrl is constant between two consecutive sampling instants,
one has

vo[n + 1] =

√
e−

2T2L
RoC v2

o[n] + kx

V 2
ac,rms

Rsense
Ro

(
1 − e−

2T2L
RoC

)
vcntrl [n]

= f(vo[n], vcntrl [n]). (4.84)

Perturbation and linearization of the above-mentioned equation proceeds in a straight-
forward manner, with

vo[n] → Vo + v̂o[n],

vcntrl [n] → Vcntrl + v̂cntrl [n]
(4.85)

representing the decomposition into dc and perturbation terms. Note that Vcntrl is
related to the steady-state power level drawn from the grid by (4.75), and therefore

kx

V 2
ac,rms

Rsense
Ro =

P

Vcntrl
Ro =

V 2
o

Vcntrl
. (4.86)

The result of the linearization step is then

v̂o[n + 1] = e−
2T2L
RoC v̂o[n] +

Vo

2Vcntrl

(
1 − e−

2T2L
RoC

)
v̂cntrl [n]. (4.87)

In the z-domain, the above-mentioned equation allows derivation of the uncompen-
sated voltage loop gain

Tu,v(z2L) � v̂o(z2L)
v̂cntrl (z2L)

=
Vo

2Vcntrl

(
1 − e−

2T2L
RoC

)
z−1
2L

1 − e−
2T2L
RoC z−1

2L

, (4.88)

where the subscript 2L to the complex variable z serves as an indicator that the voltage
loop is sampled at twice the line frequency rather than at the switching frequency.

3The equation is of the type

y
dy

dt
+

y2

τ0
= Ax,

which can be integrated with the substitutions u � y2 and
du

dt
= 2y

dy

dt
.
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Figure 4.27 Boost PFC example: Bode plots of the uncompensated voltage loop gain
Tu,v(z2L) for P = 500, 250, and 150 W.

It should be noted that sampling of the output voltage could also be performed at
a rate faster than T2L. For instance, vo(t) could be sampled at the switching rate, with
the voltage loop controller clocked accordingly. In this case, the voltage controller
would process not only the average component of the output voltage but also aliased
spectral images. This case is not considered further here.

As in the continuous-time case, the uncompensated voltage dynamics is of the
first order and determined by the load time constant RoC. Bode plots of Tu,v(z2L) are
depicted in Fig. 4.27 for the case study under consideration and relative to three dis-
tinct power levels. Figure 4.28 reports the compensated loop gain Tv(z2L), designed
to achieve fc,v = 6 Hz and ϕm,v = 70◦ at P = 500 W, with a PI compensation and
using the methodologies developed in this chapter. Simulation results, obtained using
the Middlebrook injection method, are also reported in order to verify the accuracy of
the model. Loop gain variations under different power levels are illustrated as well.

Time-domain simulated waveforms reporting the system closed-loop response
to a P = 500 to 250 W step load are depicted in Fig. 4.29.

Quantization effects due to A/D conversion and digital modulation, neglected
in this and the other examples considered in this chapter, pose additional issues and
design constraints. These considerations are addressed in Chapter 5. Other digital
PFC control architectures and control approaches have been reported in the literature,



154 CHAPTER 4 DIGITAL CONTROL

0.1 1 10 60
−20

0

20

40

60

Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

0.1 1 10 60
−180

−135

−90

−45

0

Frequency (Hz)

P
ha

se
 (
°)

250 W
150 W

Simulation

|Tv(z2L)|, 500 W

250 W

Tv(z2L), 500 W

150 W

Simulation
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leading to faster voltage regulation [73], elimination of the need to sense the input
voltage [138, 139], or the need to sense the input current [140].

4.3 OTHER CONVERTER TRANSFER FUNCTIONS

In the design practice it is usually necessary to assess the impact of disturbances of
various nature acting on the converter system. These disturbances are collectively
grouped into the input vector v(t) at the beginning of Chapter 3. Although v(t) has
been assumed constant up to this point, it is important now to make the situation
more general and assume that a generic small-signal perturbation is superimposed
to it. In the dc–dc application represented by the voltage-mode control example, for
instance, the disturbances are usually represented by the converter input voltage and
load current,

v(t) =

⎡
⎣ vg(t)

io(t)

⎤
⎦ , (4.89)
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Figure 4.29 Boost PFC example: simulated 500 W→250 W step load response.

and their small-signal effects on the converter output voltage are quantified
by the converter open-loop and closed-loop audiosusceptibility and output
impedance, respectively. The open-loop and the closed-loop definitions of these
quantities are

Gvg(s) � v̂o(s)
v̂g(s)

∣∣∣∣∣
û=0, îo=0

(Open-loop),

Gvg,cl(s) � v̂o(s)
v̂g(s)

∣∣∣∣∣
v̂ref =0, îo=0

(Closed-loop),

(4.90)

Zo(s) � − v̂o(s)

îo(s)

∣∣∣∣∣
û=0,v̂g=0

(Open-loop),

Zo,cl(s) � − v̂o(s)

îo(s)

∣∣∣∣∣
v̂ref =0, v̂g=0

(Closed-loop).

(4.91)
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One may observe that the above-mentioned transfer functions are defined in
the continuous-time Laplace domain, the same way they are defined in the context
of analog control. Unlike control transfer functions, which relate two discrete-time
signals—the control command u[k] and the sampled output vector y[k]—the distur-
bance transfer functions relate quantities that are inherently continuous-time. Fur-
thermore, averaged values are considered. An important motivation to retain this
definition even in the context of digital control is that Gvg(s) and Zo(s) are expected
to model the frequency responses measured by a network analyzer. During a fre-
quency sweep, a network analyzer filters out all frequency components except for a
narrow band around the frequency of the injected perturbation.

Regarding open-loop dynamics, evaluation of any disturbance transfer func-
tions can be performed according to the averaged small-signal modeling theory [1].
There are no conceptual difficulties in this case because the control action is con-
stant and does not appear in the small-signal models. The converter open-loop output
impedance has already been determined in (1.69):

Zo(s) = rL

(1 + srCC)
(

1 + s
L

rL

)
1 + s(rC + rL)C + s2LC

. (4.92)

The open-loop audiosusceptibility can be determined from the averaged small-signal
equivalent circuit model shown in Fig. 1.11(a) as

Gvg(s) = D
1 + srCC

1 + s(rC + rL)C + s2LC
. (4.93)

On the other hand, an analytical difficulty arises in the calculation of
closed-loop disturbance dynamics because of the sampled-data nature of the
feedback system. In particular, although input and output quantities are analog, the
control system responds to the sampled disturbance as seen at the output.

In this context, it is appropriate to clarify when and how continuous-time aver-
aged small-signal models can still be employed to obtain meaningful approximations
of Gvg,cl(s) and Zo,cl(s). As anticipated in Section 2.6.2, the averaged uncompen-
sated converter dynamics can be described by the effective uncompensated loop gain

T †
u(s) � Tu(s)e−std , (4.94)

which accounts for the total loop delay. Under the small-aliasing approximation
already discussed in Section 2.6.2,

vs(tk) ≈ vs(tk) , (4.95)

T †
u(s) becomes a good description of the dynamics seen by the digital compensator.

This suggests to define the effective loop gain T †(s) as

T †(s) � G†
c(s)T

†
u(s), (4.96)
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where G†
c(s) is an s-domain transfer function approximating Gc(z) well below the

switching rate.
Under the small-aliasing approximation, one can express Gvg,cl(s) and Zo,cl(s)

as

Gvg,cl(s) =
Gvg(s)

1 + T †(s)
,

Zo,cl(s) =
Zo(s)

1 + T †(s)
.

(4.97)

Figures 4.30 and 4.31, respectively, show the Bode plots of the output
impedance and the audiosusceptibility of the voltage-mode Buck converter example
studied in Section 3.2.1. The equivalent compensator transfer function has been
obtained via the inverse bilinear (Tustin) transformation of Gc(z):

G†
c(s) � Gc (z(s)) , (4.98)
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with

z(s) =
1 + s

Ts

2

1 − s
Ts

2

. (4.99)

In Matlab® the above-mentioned transformation is obtained simply as

Gcs = d2c(Gcz,'tustin');

Both Figs. 4.30 and 4.31 also report a comparison with the values obtained by
simulations that emulate operation of a network analyzer, in order to verify valid-
ity and accuracy of the approximate analytical models developed. The simulations
are carried out in a way similar to the operation of a network analyzer: the input
quantity—the load current or the converter input voltage—is sinusoidally perturbed
around the quiescent point, whereas the corresponding perturbation on the converter
output voltage is monitored. The simulated frequency response is then obtained by
taking the Fourier component of vo(t) at the perturbation frequency.

In the Boost average current-mode control example of Section 4.2.2, the
above-mentioned considerations can be employed to evaluate the open-loop and
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closed-loop input impedances

Zg(s) �
(

îL(s)
v̂g(s)

)−1
∣∣∣∣∣∣
û=0

,

Zg,cl(s) �
(

îL(s)
v̂g(s)

)−1
∣∣∣∣∣∣
v̂ref =0

= Zg(s)
(
1 + T †(s)

)
,

(4.100)

where T †(s) is defined as in (4.96), whereas the effective uncompensated loop gain
T †

u(s) is

T †
u(s) � RsenseGiu(s)e−s Ts

2 . (4.101)

The Bode plots of Zg(s) and Zg,cl(s) are shown in Fig. 4.32, along with the simulated
frequency responses.
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The Laplace-domain treatment based on the small-aliasing approximation is
one among various approaches for modeling converter transfer functions of digitally
controlled converters. Other approximated methods exist, for instance, in which the
formulation is carried out in the z-domain [141].

4.4 ACTUATOR SATURATION AND INTEGRAL
ANTI-WINDUP PROVISIONS

So far, only the controller behavior within its linear range of operation has been
addressed. In practice, large transients may drive the control system into large-signal
motions requiring, in general, specific provisions in order to be properly handled.
Saturation of the pulse width modulator—which represents the actuator in a
PWM-controlled converter—is an example of such nonlinear effects. It should be
noted that saturation of duty cycle and other nonlinear effects due to various circuit
limitations also arise in analog controllers where provisions such as clamping of
voltages within the controller circuit are often applied. The purpose of this section
is to discuss saturation effects and possible mitigation strategies in the context of
digital controller implementation.

Suppose, for instance, that the digital voltage-mode control designed in
Section 4.2.1 is set to Vref = 3.3 V reference and consider the closed-loop response
to a large 0 A→10 A step-load transient, as shown in Fig. 4.33 for two input
voltages, Vg = 5 V and Vg = 4 V. The control command, and therefore the duty
cycle, saturates to 100% for a significant fraction of the transient duration, the
saturation becoming deeper at lower Vg because the steady-state control command
becomes closer to 1. During the DPWM saturation interval, the integral term
ui[k] of the control action increases due to the positive regulation error e[k] being
accumulated over time. By the time the DPWM goes back into its linear region
of operation, ui[k] has reached a value that largely exceeds the steady-state value.
As a result, a sufficient negative error has to be integrated before the system
settles back to steady state. The end result is a larger overshoot in the output
voltage response and a correspondingly longer settling time. This phenomenon is
an example of integrator windup, a nonlinear phenomenon commonly observed
in PID-controlled systems [127] (including analog controlled switched-mode
converters), which degrades the large-signal system response. Any countermeasure
aimed at preventing or mitigating this effect is usually referred to as an anti-windup
provision.

One basic anti-windup provision, similar to clamping the voltage across an inte-
grating capacitor in an analog PID circuit, consists of constraining the integration
range of the PID accumulator. Consider the integrator building block of Fig. 4.34. A
saturation block is introduced within the accumulation loop to constrain the integrator
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Figure 4.33 Synchronous Buck example: impact of PWM saturation during a 0 A→10 A
step-load transient.

e[k] ui[k]uacc[k]

ui[k − 1]

+

z−1

Ki

Figure 4.34 Saturated integrator.

state variable to within the range [U−
i , U+

i ]. Equations of the integrator become

uacc [k] = Kie[k] + ui[k − 1],

ui[k] =

⎧⎨
⎩

U+
i if uacc [k] ≥ U+

i ,
U−

i if uacc [k] ≤ U−
i ,

uacc [k] otherwise.

(4.102)
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Figure 4.35 Synchronous Buck example: effect of saturation of the integrator state variable.

A common choice is [U−
i , U+

i ] = [0, 1], so that the integral term never exceeds the
steady-state range of operation. Figure 4.35 compares the 0 A→10 A step-load
responses with and without the integral saturation provision. The settling time of the
transient is substantially improved.

Detrimental effects of the actuator saturation can further be exemplified in the
multiloop control example of Section 4.2.3. The block diagram of Fig. 4.36 highlights
two saturation blocks present in the system. One is, similar to the voltage-mode con-
trol case discussed earlier, the inherent saturation of the control command u[k]. The
second saturation block is intentionally introduced to limit the current loop setpoint
iref [k], which provides a useful limitation of the inductor current. Note, however, that
this is a soft inductor current limitation because iL(t) is only limited to the extent that
it follows iref [k], that is, within the current loop bandwidth.

In the example considered, positive and negative limits for iref [k] are set to 6 A
and −1 A, respectively. The system response to a 1.8 to 3.3 V step of the voltage
setpoint Vref is illustrated in Fig. 4.37. Such transient causes a steep increase in the
inductor current demand and therefore a temporary saturation of the current loop
setpoint iref [k]. Without any kind of anti-windup provision, the saturation of iref [k]
causes the integral state variable of the voltage-loop compensator to windup, driving
the system into a nonlinear oscillating mode, which strongly degrades the transient
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Figure 4.38 Anti-windup scheme based on conditional integration.

performance. On the other hand, if the voltage-loop compensator is equipped with a
saturated integrator, the system gracefully exits the saturated condition and resumes
control of the converter, as shown in the waveforms of Fig. 4.37 with anti-windup
provision (‘w/ AW’).

An even more effective approach to anti-windup is conditional integration,
which consists of freezing the integration process upon saturation of the overall con-
trol command u[k]. This approach is illustrated in Fig. 4.38. The overall PID output
is subject to a saturation block that constrains u[k] to the range [0, 1], which corre-
sponds to the 0–100% duty cycle limits. The saturation block outputs a digital flag
sat[k] signaling the saturation status,

sat[k] =
{

0 0 ≤ uPID [k] ≤ 1,
1 otherwise .

(4.103)

The signal sat[k] is used as the controlling input of a 2-to-1 digital multiplexer that
passes the scaled error Kie[k] during linear operation and the constant 0 when in
saturation. Notice the saturation flag can only be employed with a one-cycle delay,
as its determination during cycle k requires the calculation of the overall control sig-
nal. Conditional integration has the advantage, over the simple integral saturation
provision, to immediately freeze the error accumulation upon PWM saturation and
therefore to further speed up the recovery process when linear control operation is
regained.

Conditional integration makes it unnecessary to limit the integral state by intro-
ducing a saturation block as in Fig. 4.34. In practice, however, the accumulation is
always implemented in saturated arithmetic, which inherently implements saturation
of the integral term. This is discussed in more detail in Chapter 6, along with other
controller implementation issues.
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The basic approaches highlighted in this section are relatively simple and effec-
tive and do not significantly impact the controller complexity. Other more sophisti-
cated anti-windup techniques, which have been proposed for both analog and digital
controllers can be found in the literature [127, 142].

4.5 SUMMARY OF KEY POINTS

• Once the z-domain model of the uncompensated dynamics is available, based
on the techniques presented in Chapter 3, the controller design can proceed
with the usual goals of ensuring the required control bandwidth and stability
margins.

• In the bilinear transform approach presented in this chapter, the problem
of compensator design is reformulated in an equivalent continuous-time
domain (p-domain). This allows straightforward application of well-known
frequency-domain analog control design techniques, and simple direct
z-domain synthesis of digital compensators without introducing any
approximations.

• Other converter transfer functions of interest, such as the closed-loop output
impedance or audiosusceptibility, rely on standard s-domain formulation even
when the controller is digital. An approximated way to do so, applicable under
the small-aliasing approximation, is to make use of the effective s-domain con-
trol loop dynamics introduced in Section 2.6.

• Actuator saturation may lead to integral windup phenomena and consequently
degraded transient responses. Mitigation of these effects is typically accom-
plished by embedding suitable anti-windup provisions into the digital compen-
sator architecture.





C H A P T E R 5
AMPLITUDE QUANTIZATION

Up to this point, the digital nature of the control has been modeled and discussed
only in terms of time quantization. In this chapter, the picture is completed by exam-
ining amplitude quantization effects. Nonlinear interactions between analog to dig-
ital (A/D) and digital pulse width modulator (DPWM) quantizations may result in
steady-state movements of the system state-space trajectory often referred to as limit
cycling [37, 38, 143–147]. Limit cycling is a concern because it potentially affects
regulation accuracy and performance of digitally controlled regulators.

In contrast to time quantization, amplitude quantization does not preserve
the system linearity and produces effects that cannot be treated using standard
linear system analysis tools. As a result, a comprehensive analytical treatment of
quantization-related phenomena is more involved and more difficult. This chapter
is devoted to explaining how limit cycling arises in relation to the existence of
a steady-state solution in a digitally controlled converter with A/D and DPWM
quantizations. The focus is on digitally controlled dc–dc converters. Quantization
effects and limit cycling in digitally controlled single-phase PFC rectifiers are
addressed in [145]. Quantization characteristics are summarized in Section 5.1, and
the problem of finding a steady-state solution in a digitally controlled converter is
discussed in Section 5.2. Necessary no-limit-cycling conditions aimed at preventing
limit cycling are discussed in Section 5.3. Section 5.4 reviews some of the techniques
targeting high-resolution DPWM and A/D implementations, whereas the key points
are summarized in Section 5.5.

5.1 SYSTEM QUANTIZATIONS

For reference, Fig. 5.1 reiterates the block diagram of a digital voltage-mode con-
trolled synchronous Buck converter studied, as a modeling and control loop design
example, in Chapters 2–4. This section reviews the amplitude quantization charac-
teristics of the A/D converter and the DPWM in the digital control loop.

5.1.1 A/D Converter

An introductory description of the A/D conversion process and associated quantiza-
tion are provided in Section 2.2. For convenience, the A/D converter model and its

Digital Control of High-Frequency Switched-Mode Power Converters, First Edition.
Luca Corradini, Dragan Maksimović, Paolo Mattavelli, and Regan Zane.
© 2015 The Institute of Electrical and Electronics Engineers, Inc. Published 2015 by John Wiley & Sons, Inc.
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quantization characteristic QA/D [ . ] are shown again in Fig. 5.2. In this chapter, the
focus is on the amplitude quantization effects. Therefore, the A/D conversion time
and any other delays are neglected from here on, treating the A/D conversion process
as essentially instantaneous. The quantization characteristic is shown in Fig. 5.2(b)
for the case when the linear conversion range of the A/D converter spans from 0 V
to a full-scale voltage vs = VFS .

Recall that the zero-error bin represents the particular quantization level at
which the sensed signal vs is to be regulated and that such a bin is identified by the
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controller digital setpoint Vref . Assuming that a steady-state operating point exists in
the closed-loop system such that e� = 0, the quantized A/D output v�

s is equal to Vref ,
which means that the sampled version of the sensed analog signal resides inside the
zero-error bin Bref ,

e� = 0 ⇔ v�
s[k] = Vref ⇔ vs[k] ∈ Bref . (5.1)

It should be noted that, a priori, the very existence of such an operating point where
the error is zero (e� = 0) is not automatically guaranteed once quantizations are
included in the system. In addition to the issue of existence of the desired steady-state
solution, stability of the steady-state operating point is another delicate matter when
the quantizer nonlinearities are considered. Ideally, one wants such an operating point
to exist and be stable in the sense described by (5.1): the controller must be able
to reach the zero-error bin and remain there indefinitely in the absence of external
disturbances.

Quantization of the sensed signal vs translates into a corresponding quantiza-
tion of the converter output voltage vo. Denoting with H0 = H(s = 0) the dc gain of
the voltage sensing circuitry, the width of the equivalent output voltage quantization
bin is

q(A/D)
vo

=
q

(A/D)
vs

H0
=

VFS,o

2nA/D
, (5.2)

where nA/D denotes the number of bits of A/D resolution and

VFS,o =
VFS

H0
(5.3)

defines the equivalent A/D conversion range on the output voltage. Analog output
voltages within a zero-error bin of width q

(A/D)
vo produce a zero digital error signal

e� = 0, which implies that the LSB resolution q
(A/D)
vo determines how well the output

voltage can be regulated by the digital control loop. Suppose that the regulation bin
q

(A/D)
vo must be less than ε % of the nominal output voltage Vref /H0. From 5.2, it

follows that the A/D converter must have

nA/D > log2

(
100
ε

)
+ log2

(
VFS

Vref

)
(5.4)

bits of resolution. As an example, assuming ε = 1 and VFS/Vref = 2, an A/D con-
verter having at least nA/D = 8 bits of resolution is required.

5.1.2 DPWM Quantization

As anticipated in Section 2.4, the DPWM can only produce pulses of quantized duty
cycle. Such quantization can be equivalently modeled as a quantization on the control
command u[k]. Given the duty cycle resolution bin, that is, the smallest duty cycle
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variation qD, the smallest command variation qu that the modulator is capable of
resolving is

qu = qDNr =
Nr

2nDPWM
. (5.5)

Here, nDPWM is the number of bits of DPWM resolution. Therefore, the DPWM
behaves as an infinite resolution DPWM preceded by a quantizer QDPWM [ . ] on u[k],

u�[k] = QDPWM [u[k]] � NrQD

[
u[k]
Nr

]
. (5.6)

This model is implicitly used throughout the previous chapters to represent the
DPWM quantization in the control block diagrams. The most important implication
of (5.6) is the corresponding quantization of the steady-state converter output
voltage. If M(D) is the converter conversion ratio,

M(D) � Vo

Vg

, (5.7)

then
Vo(D

�) = M(D�)Vg (5.8)

are the steady-state output voltages reproducible by a constant, quantized duty cycle
D�. In general, the corresponding quantization of Vo is not uniform, as M(D)
depends on D and therefore on the converter operating point. In the neighborhood of
a steady-state D�, the smallest duty cycle variation qD produces a variation q

(DPWM )
vo

approximately equal to

q(DPWM )
vo

≈ ∂M

∂D

∣∣∣∣
D�

qDVg. (5.9)

In a Buck converter, for instance, M(D) = D and therefore

q(DPWM )
vo

= qDVg =
qu

Nr

Vg (Buck), (5.10)

which is independent of D�. This situation is depicted in Fig. 5.3 for a 3-bit DPWM
example. Note, however, that q

(DPWM )
vo depends on Vg because the input voltage

affects the small-signal gain of the power stage. Larger input voltages lead to coarser
DPWM quantization steps on Vo. In other words, the DPWM and the power converter
operate as a digital-to-analog (D/A) converter, and DPWM quantization determines
how precisely the converter output voltage can be positioned.

As another example, a Boost converter has

M(D) =
1

1 − D
⇒ ∂M

∂D

∣∣∣∣
D�

=
1

(1 − D�)2 , (5.11)
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and therefore

q(DPWM )
vo

≈ qD

1
(1 − D�)2 Vg (Boost), (5.12)

which suggests a finer quantization of Vo as D� decreases, as Fig. 5.4 confirms.
The DPWM-induced quantization of the output voltage can be expressed more

compactly by noting that the slope of M(D) times the input voltage Vg is the dc gain
Gvd0 of the control-to-output voltage small-signal transfer function,

∂M

∂D
Vg = Gvd(s = 0) = NrGvu(z = 1), (5.13)

from which, in general, it follows that

q(DPWM )
vo

≈ Gvd(s = 0)qD = Gvu(z = 1)qu , (5.14)

which is valid for every converter topology.
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5.2 STEADY-STATE SOLUTION

Assuming that a stable control loop has been designed, a digitally controlled converter
is expected to operate at an equilibrium, that is, steady-state operating point where all
controller variables have constant values and where all converter waveforms are peri-
odic, with the period equal to the switching period Ts = 1/fs. To find the steady-state
solution, consider a dc model of a digitally controlled converter, including A/D and
DPWM quantization, as shown in Fig. 5.5. This is a static model, so the discrete-time
compensator is represented by its dc gain Gc0,

Gc0 � Gc(z)
∣∣∣
z→1

, (5.15)

while H0 is the sensor dc gain. Neglecting losses, the converter is represented by an
ideal 1 : M(D�) transformer, where M(D) = Vo/Vg is the dc conversion ratio.

Suppose first that very high-resolution A/D and DPWM are employed, so that
q

(A/D)
vs ≈ 0 and qu ≈ 0 or, equivalently, V �

s ≈ Vs and u� ≈ u. An equilibrium solu-
tion in the model of Fig. 5.5 can be found using a graphical approach illustrated in
Fig. 5.6, where the quantized sensed signal V �

s at the A/D converter output is shown
as a function of the sensed analog signal Vs at the A/D converter input.

For the case when the A/D resolution is very high, in the linear region, the A/D
quantization characteristic becomes simply

V �
s = Vs. (5.16)

Similarly, going from V �
s to Vs through the blocks around the loop, one has

Vs =
H0VgGc0

Nr

(
Vref − V �

s

)
, (5.17)

+−
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Figure 5.5 DC model of a digitally controlled converter, including A/D and DPWM
quantization.
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assuming very high-resolution DPWM in the synchronous Buck converter example
(M(D) = D). The steady-state solution, which is found at the intersection of (5.16)
and (5.17), as shown in Fig. 5.6, in this case allows a simple algebraic solution. Elim-
inating V �

s from (5.16) and (5.17), the dc output voltage Vs/H0 is obtained,

Vo =
Vref

H0

H0VgGc0
Nr

1 + H0VgGc0
Nr

, (5.18)

where the quantity
(
H0VgGc0

)
/Nr = T0 can be recognized as the dc value of the

loop gain in the synchronous Buck converter. Assuming very high-resolution A/D and
DPWM, the steady-state solution (5.18) is exactly the same as with analog control: a
large, but finite, dc compensator gain Gc0 results in a small, but not zero, dc regulation
error, as illustrated by point A in Fig. 5.6. If, on the other hand, the compensator
includes an integral action, Gc0 → ∞, (5.17) becomes a horizontal line V �

s = Vref ,
and the equilibrium solution is at point B, which corresponds to zero dc error, Vo =
Vref /H0.

Consider next a case when practical, finite-resolution A/D and DPWM are
employed. A graphical solution is illustrated in Fig. 5.7. The A/D quantization char-
acteristic is now highly nonlinear,

V �
s = QA/D [Vs], (5.19)

with the widths of the A/D quantization bins equal to q
(A/D)
vs . Furthermore, because

of the DPWM quantization, the characteristic from V �
s to Vs around the loop is also

nonlinear,

Vs =
H0Vg

Nr

QDPWM
[
Gc0(Vref − V �

s )
]
, (5.20)

assuming, again, the synchronous Buck converter example, with M(D) = D. The
widths of the horizontal bins in the characteristic (5.20) around the loop are equal



174 CHAPTER 5 AMPLITUDE QUANTIZATION

V �
s

Vs

q
(A/D)
vs

Bi Bref

V �
s = QA/D [Vs]

VFS0

B B

A

H0Vg

Nr
qu

Vs =
H0Vg

Nr
QDPWM [Gc0 (Vref − V �

s )]

qu/Gc0

Figure 5.7 A graphical approach to finding a quiescent operating point in a digitally
controlled converter with A/D converter and DPWM having finite resolution. The expression
for the sensed dc voltage Vs as a function of the quantized value V �

s is shown for the
synchronous Buck converter example.

to H0VgqD where qD = qu/Nr = 1/2nDPWM is the bin width due to the DPWM
quantization, as shown in (5.5). The height of a vertical step in the characteristic
(5.20) is equal to qu/Gc0.

If the compensator dc gain Gc0 is large, but finite, the equilibrium solution
is illustrated by point A in Fig. 5.7. This point is on a vertical segment of the A/D
quantization characteristic. However, the A/D output V �

s can only be equal to an inte-
ger multiple of q

(A/D)
vs . Therefore, in contrast to point A in Fig. 5.6, the equilibrium

point A in Fig. 5.7 is not feasible. In conclusion, given a large, but finite dc gain
of the compensator, the digitally controlled converter does not have a fixed equi-
librium point. Instead, the A/D converter output must bounce among two or more
quantization steps, resulting in a persistent disturbance (limit cycling) in converter
waveforms.

If the compensator includes an integral action, so that Gc0 → ∞, the widths of
the vertical steps in the characteristic (5.20) vanish to zero, qu/Gc0 → 0. The charac-
teristic from V �

s to Vs around the loop becomes a series of points, H0VgqD apart, as
shown in Fig. 5.7. In this case, multiple equilibrium solutions may exist, as illustrated
by the two points B in Fig. 5.7. Each one of the two possible equilibrium solutions is
inside the A/D converter zero-error bin Bref .

It should be noted that the existence of multiple possible equilibrium solu-
tions corresponding to e� = 0 is predicated upon the assumption that the compensator
includes integral action, Ki > 0, and that the widths of the bins due to DPWM quan-
tization are shorter than the A/D bins,

H0Vgqu

Nr

< q(A/D)
vs

, (5.21)

as illustrated in Fig. 5.7. If the condition (5.21) is not satisfied, a steady-state solution
may or may not exist, depending on whether there is a DPWM quantized sensed out-
put voltage Vs inside the A/D zero-error bin or not. In the case where no such point
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B exists, the control loop acts to bounce the output voltage through two or more bins
around the zero-error bin, thus leading to limit cycling. To achieve a steady-state oper-
ating point where all controller variables have constant values and where all converter
waveforms are periodic, with the period equal to the switching period Ts = 1/fs, it
is necessary to ensure that a dc solution exists inside the zero-error bin of the A/D
converter. This conclusion leads to necessary no-limit-cycling conditions discussed
in Section 5.3.

5.3 NO-LIMIT-CYCLING CONDITIONS

On the basis of the discussion in Section 5.2, the existence of a steady-state solu-
tion inside the A/D converter zero-error bin presents a necessary no-limit-cycling
condition. This condition, which requires that the compensator must include integral
action, Ki > 0, is developed further in this section, leading to formulation of neces-
sary no-limit-cycling conditions in terms of DPWM and A/D resolution, as well as
the value of the integral gain Ki.

5.3.1 DPWM versus A/D Resolution

Assuming Ki > 0, (5.21) is a necessary condition to guarantee existence of a dc solu-
tion inside the A/D converter zero-error bin in the digitally controlled synchronous
Buck converter example. More generally, this condition can be interpreted in terms
of the equivalent DPWM and A/D quantizations of the output voltage.

Consider Fig. 5.8, illustrating a set of possible output voltages due to DPWM
quantization, as well as the output voltage bins due to A/D quantization on the Vo axis.
For clarity, a 3-bit A/D converter is assumed where bin 011 represents the zero-error
bin. In the situation depicted, no DPWM quantization level of Vo falls into A/D bin
011 (or bin 000). As the zero-error condition cannot be attained, the controller must
continuously adjust the output voltage in the neighborhood of the setpoint in the futile
attempt to null the regulation error. As a result, a limit cycle arises.

Consider next the situation depicted in Fig. 5.9, in which the DPWM resolution
has been increased to the point that at least one DPWM quantization level must fall

000
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010

011

100

Vo

q
(A/D)
vo

q
(DPWM)
vo

Figure 5.8 DPWM
resolution is coarser than the
A/D resolution in terms of
output voltage quantization.
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Figure 5.9 DPWM resolution is finer than the A/D resolution in terms of output voltage
quantization.

into every A/D bin, which means that a stable quiescent operating point, void of limit
cycling, is feasible.

The above-mentioned considerations, together with the assumption that the
compensator employs an integral action, (Ki > 0), lead to a general no-limit-cycling
condition

q(DPWM )
vo

< q(A/D)
vo

, (5.22)

which states that the DPWM resolution must be finer than the A/D resolution when
both are expressed in terms of the output voltage quantization. Using (5.9), this con-
dition can be expressed in terms of the DPWM quantization bin qu and the A/D
quantization bin q

(A/D)
vs ,

H0Vg

∂M

∂D

∣∣∣∣
D�

qu

Nr

< q(A/D)
vs

, (5.23)

which, for the Buck converter, reduces to (5.21).
As an example, consider applying these concepts to the digital control design of

the synchronous Buck converter, assuming that an 8-bit A/D converter is employed,
which operates on a full-scale range VFS = 2 V. The sensor gain is H0 = 1, and
Vg = 5 V. The A/D quantization step on the output voltage Vo is then

q(A/D)
vo

=
q

(A/D)
vs

H0
=

2 V
28 ≈ 7.8 mV. (5.24)

Suppose also an 8-bit DPWM is employed. As for this example Nr = 1, the
duty cycle and control command resolutions coincide and

qD = qu ≈ 0.39%. (5.25)

This translates into an equivalent quantization on Vo equal to

q(DPWM )
vo

= VgqD ≈ 19.5 mV. (5.26)
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Figure 5.10 Simulated steady-state operation of the converter with a coarse DPWM
resolution, so that the no-limit-cycling condition (5.22) is not met.

As seen, the no-limit-cycling condition (5.22) is not fulfilled. Figure 5.10 illus-
trates the simulated steady-state behavior of the controller under these conditions,
confirming that periodic limit cycling affects converter operation.

If (5.22) is not satisfied, the equilibrium solution may or may not exist,
depending on whether there is a DPWM quantization point inside the A/D converter
zero-error bin or not. Another important observation is that limit cycling, if it does
occur, is relatively small in amplitude, in the order of the quantization resolution
q

(A/D)
vo of the A/D converter, as illustrated by the waveforms of Fig. 5.10.

Suppose that the DPWM resolution is increased to nDPWM = 10 bits. In this
case, the output voltage quantization shrinks down to q

(DPWM )
vo ≈ 4.5 mV, which is

finer than q
(A/D)
vo ≈ 7.8 mV, so that the no-limit-cycling condition (5.22) is met. In

this case, the limit cycle disappears, as shown in Fig. 5.11.
Note that (5.22) and equivalently (5.23) depend, in general, on the converter

operating point. In other words, the DPWM quantization on Vo is not uniform, and
both situations depicted in Figs 5.8 and 5.9 can occur in the same system as a result
of a change in the operating condition. To guarantee feasibility of a no-limit-cycling
steady-state solution, (5.22) must be fulfilled with sufficient margin over the entire
envisioned operating range of the converter.
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Figure 5.11 Simulated steady-state operation of the converter with a fine DPWM
resolution, so that the no-limit-cycling condition (5.22) is met.

5.3.2 Integral Gain

The no-limit-cycling condition (5.22) suggests that a sufficiently fine DPWM resolu-
tion prevents the DPWM quantization to interact with the A/D converter and generate
a limit cycle. Recall that the condition is predicated on the assumption that the com-
pensator employs an integral action, Ki > 0, as detailed in Section 5.2. However,
even when (5.22) is fulfilled, limit cycling can still arise if the integral gain Ki is
too large because the A/D quantization, in combination with the integral action in
the compensator, results in an effective steady-state quantization of the duty cycle
command u[k].

To see this, consider first the response of a simple integral compensator to a unit
error impulse of amplitude equal to q

(A/D)
vs , that is, the smallest possible disturbance

at the compensator input. The integrator response to this unit impulse is a step, as
shown in Fig. 5.12, where Ki is the integral gain. The step amplitude in u[k] is equal
to Kiq

(A/D)
vs . In conclusion, because of the A/D quantization and the integral gain Ki

in the compensator, the control command signal u[k] is effectively quantized with a
bin width equal to Kiq

(A/D)
vs , regardless of how high the DPWM resolution may be. To

generalize the above discussion, suppose that the system controlled by a digital PID
compensator has reached a steady-state condition in which e�[k] = 0 from a certain
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Figure 5.12 Waveforms illustrating quantization of the DPWM input signal u[k] due to A/D
quantization and integral action of the digital compensator: (top) an impulse in error v�

e and
(bottom) impulse response of an integral digital compensator with integral gain Ki.

k0 on. The steady-state control action then consists solely of the steady-state integral
term Ui:

e�[k] = 0 ⇔ u[k] = ui[k] = Ui. (5.27)

Signal ui[k], on the other hand, is the result of the accumulation of all past regulation
errors up to instant k, times the integral gain Ki:

ui[k] = Ki

k∑
n=−∞

e�[n]. (5.28)

Because of the quantization of the regulation error, one has

e�[k] = ẽ[k]q(A/D)
vs

, ẽ[k] ∈ Z, (5.29)

and therefore

Ui = Ki

(
n=k∑

n=−∞
ẽ[n]

)
︸ ︷︷ ︸

N [k]∈Z

q(A/D)
vs

= N [k]
(
Kiq

(A/D)
vs

)
. (5.30)

Hence, the steady-state control command Ui embeds an inherent granularity
that is determined by the A/D converter quantization step q

(A/D)
vs , multiplied by the

integral gain Ki,
q(Ki)
u � Kiq

(A/D)
vs

= KiH0q
(A/D)
vo

. (5.31)

Whatever the steady-state condition, the integrator is only capable of position-
ing Ui to within a quantization step q

(Ki)
u wide. If qu 	 q

(Ki)
u so that the hardware

DPWM quantization is much finer than q
(Ki)
u , the integral term quantization becomes



180 CHAPTER 5 AMPLITUDE QUANTIZATION

the dominant one, and the equivalent quantization step on the output voltage due to
(5.31) is

q(Ki)
vo

≈ Gvd(s = 0)
q

(Ki)
u

Nr

= Gvd(s = 0)
KiH0q

(A/D)
vo

Nr

, (5.32)

where

Gvd(s = 0) = NrGvu(z = 1) =
∂M

∂D

∣∣∣∣
D�

(5.33)

is the dc control-to-output gain.
Such equivalent quantization of Vo interacts with the A/D quantization in a very

similar way as the hardware DPWM quantization does. By assumption, e�[k] = 0 so
at least one quantization level (5.32) must reside in the zero-error bin:

q(Ki)
vo

< q(A/D)
vo

, (5.34)

which leads to the following no-limit-cycling condition involving the integral gain:

Gvd(s = 0)
KiH0

Nr

< 1 . (5.35)

As sketched in Fig. 5.13, when the foregoing constraint is not satisfied, a sit-
uation similar to the one previously depicted in Fig. 5.8 is obtained, in which the
absence of a modulation level inside the zero-error A/D bin triggers limit cycling.
The situation depicted in Fig. 5.13 can be prevented by decreasing the integral gain
Ki until every A/D bin can be reached by a modulation level—this is the condition
illustrated in Fig. 5.14.

For the Buck converter control of Fig. 5.1, one has Gvd(s = 0) ≈ Vg and Nr =
1, therefore the no-limit-cycling condition (5.35) becomes

H0VgKi < 1. (5.36)
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Figure 5.13 Integral term
resolution is coarser than the
A/D resolution in terms of
output voltage quantization.
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In the considered synchronous Buck design example, from the value of Ki in
(4.39), one has

H0VgKi ≈ 0.37 (5.37)

and the no-limit-cycling condition (5.35) is fulfilled with large margin.

5.3.3 Dynamic Quantization Effects

The no-limit-cycling conditions developed in this section require that the controller
employs an integral action Ki > 0 and are based on guaranteeing the existence of a
steady-state dc operating point. The first condition, given by (5.22) or equivalently
(5.23), requires that a sufficiently high-resolution DPWM be employed so as to pre-
vent the DPWM and the A/D quantizations to interact with each other and generate a
limit cycle. The second condition, given by (5.34) or equivalently (5.35) requires that
the controller integral gain Ki > 0 must be sufficiently small so that the controller
is able to position the regulated signal into the zero-error bin of the A/D converter.
These two basic no-limit-cycling conditions are, in the majority of cases, sufficient
for a first-cut design.

If the two no-limit-cycling conditions discussed in this section are met, a dig-
itally controlled converter is guaranteed to have at least one equilibrium solution
in the zero-error bin of the A/D converter, e� = 0. It should be understood, how-
ever, that the existence of an equilibrium solution is in general not sufficient to guar-
antee a steady-state operation without limit cycling. With quantization effects, the
converter is a complex nonlinear dynamic system, and limit-cycling disturbances
can sometimes be observed even when the loop is design for stable operation, and
when the basic no-limit-cycling conditions are met. On the other hand, for a stable,
well-designed loop with high-resolution A/D and DPWM components, the ampli-
tudes of any such limit-cycling disturbances in the output voltage tend to be relatively
small, in the order of q

(A/D)
vo . In practice, such small-amplitude disturbances may be

tolerated.
More rigorous dynamic stability and performance analysis of quantization

effects in digitally controlled switched-mode converters is a subject of ongoing
investigations. An approximate describing function-based analysis suggests that,



182 CHAPTER 5 AMPLITUDE QUANTIZATION

in addition to meeting the two basic no-limit-cycling conditions developed in this
section, it is desirable to design a control loop with sufficiently large gain margin
[38]. To mitigate the need to perform extensive time-domain simulations, a statistical
analysis approach is presented in [143], with design guidelines relating the control
loop bandwidth to the probability of limit-cycle oscillations. An energy-based
approach for predicting limit-cycle oscillations is presented in [144], together with
design guidelines related to the control bandwidth, positioning of PID zeros, and
system damping. A more comprehensive set of no-limit-cycling conditions can
be found in [146, 147] for the case of the synchronous Buck converter with a PI
compensator.

5.4 DPWM AND A/D IMPLEMENTATION TECHNIQUES

As discussed in Sections 5.1–5.3, high-resolution DPWM and A/D are required to
achieve precise regulation and mitigate limit cycling oscillations in digitally con-
trolled converters. The purpose of this section is to briefly review some of the DPWM
and A/D implementation techniques in the context of high-frequency digitally con-
trolled switched-mode power converters.

5.4.1 DPWM Hardware Implementation Techniques

A block diagram and operating waveforms of a standard counter-based DPWM
introduced in Section 2.4 are shown again in Fig. 5.15. The counter-based DPWM
replicates an analog pulse width modulator by replacing a saw-tooth or a triangular
analog carrier waveform by the digital ramp r[nTclk ] at the output of a counter
clocked at a clock frequency fclk . A digital comparator outputs the modulated
waveform by comparing the counter output with a latched digital control command
uh. The counter-based DPWM of resolution nDPWM requires a clock frequency
fclk = 2nDPWM fs, where fs is the switching frequency. As an example, in Section 5.3,
it is found that a 10-bit DPWM is required in order to meet no-limit-cycling
conditions in the synchronous Buck converter operating at fs = 1 MHz. To achieve
this resolution with the counter-based DPWM, a clock frequency greater than 1 GHz
would be required.

Various alternative DPWM architectures have been proposed to achieve prac-
tical realizations of high-resolution DPWM’s for high-frequency switched-mode
power converters [148]. The main idea behind these architectures is to achieve
high-resolution time quantization using a tapped string of delay cells, commonly
referred to as a delay line, instead of the very high-frequency clock. A block diagram
and simplified operating waveforms of a basic delay-line DPWM are shown in
Fig. 5.16. A clock signal at a frequency equal to the switching frequency, fclk = fs,
sets the output latch at the start of a switching period. The same clock signal is
propagated through a delay line so that the output at tap mk is delayed with respect
to the output at tap mk−1 by a cell delay ΔtDPWM = tc. The latched digital control
command uh selects that tap resets the output signal using a digital 2nDPWM : 1
multiplexer. In the example waveforms shown in Fig. 5.16(b), uh = u = 2, tap m2 is
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Figure 5.15 (a) Block diagram
of a counter-based digital pulse
width modulator and (b)
associated waveforms.

selected, which results in the DPWM output pulse width equal to dTs = 3tc. A clear
advantage of this architecture is that the time resolution in the output signal is set by
a cell delay tc as opposed to the clock period Tclk . As a result, the clock frequency
equals the switching frequency. Other practical difficulties relate to the fact that the
total delay may be too short or too long compared to the desired switching period Ts

and that adjusting the switching frequency is not as simple as in the counter-based
architecture. These issues can be addressed in one of two ways: (1) by closing
the delay line into a self-oscillating ring that serves as a clock generator or (2) by
employing a delay-locked loop capable of adjusting the cell delay tc to secure a lock
between a clock generator and the delay line.

A disadvantage of the delay-line approach is that the length of the delay line
and the size of the multiplexer grow exponentially with the number of bits nDPWM .
In hybrid DPWM architectures, counter and delay-line approaches are combined, as
illustrated in Fig. 5.17. The latched control command u having nDPWM bits is split
into two parts as shown in Fig. 5.18, the least significant m-bit long uLS and the
most-significant (nDPWM − m)-bit long uMS . The most-significant part uMS acts as
the control command for the counter-based portion of the hybrid DPWM, denoted
as the “synchronous modulator” in Fig. 5.17. As in the counter-based DPWM of
Fig. 5.15, a zero count (r = 0) initiates the output pulse c(t). At the time when the
ramp r reaches the most-significant part uMS , the synchronous modulator generates
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Figure 5.16 Delay line DPWM: (a) architecture and (b) operating waveforms.

a pulse m0(t), as shown in Fig. 5.17(b). This pulse, instead of resetting the output as
in the pure counter-based DPWM, acts as the input to the delay-line portion of the
hybrid modulator. Along the delay line, a tap is selected based on the least-significant
command part uLS , which extends the output pulse by uLS tc, where tc is the propa-
gation delay of a delay cell. In the example shown in Fig. 5.17(b), the high-resolution
extension is 2tc. The duty cycle of the output pulse c(t) is equal to

d[k] =
(
uMS +

uLS

2m

) Tclk

Ts

, (5.38)
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Figure 5.17 Hybrid DPWM: (a) architecture and (b) operating waveforms.

where
Tclk

Ts

=
fs

fclk
=

1
2(nDPWM −m) . (5.39)

It should be noted that the hybrid architecture requires a cell delay tc such that 2mtc =
Tclk . As in delay-line architectures, this can be accomplished using delay-locked loop
or other techniques.
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Figure 5.18 The control
command u in the hybrid DPWM
of Fig. 5.17.

On the basis of (5.38) and (5.39), it is clear that the length m of the
least-significant part provides a way to achieve a desirable trade-off between the
DPWM size and the required clock rate, that is, a trade-off between the delay-line
DPWM and the counter-based DPWM. A larger m implies a longer delay line
and a larger multiplexer, while the required clock rate is reduced. In the limit, for
m = nDPWM , the hybrid DPWM becomes a pure delay-line DPWM with fclk = fs.
On the other hand, with m = 0, the hybrid DPWM becomes a pure counter-based
DPWM with fclk = 2nDPWM fs.

In both delay-line and hybrid architectures, implementation issues related
to clock and delay-line lock, delay matching, and circuit layout require attention.
High-resolution DPWM designs based on these architectures have been demon-
strated both in custom-integrated circuits [22, 24, 25, 27, 29, 148–151] and in field
programmable gate arrays (FPGAs) [152–156]. Other approaches to high-resolution
digital pulse width modulation, including multiphase modulators, can be found in
[157–164].

5.4.2 Effective DPWM Resolution Improvements via ΣΔ
Modulation

A digital modulator in combination with the converter power stage can be viewed
as a power D/A converter, taking digital command u as an input and producing
converter voltages or currents as analog outputs. The power-D/A view has led to a
number of DPWM developments based on techniques adopted from the signal D/A
conversion area. In particular, ΣΔ modulation techniques, which have been used
in signal processing, data converter, and digital audio applications [165], have been
applied to achieve effective DPWM resolution improvements in digitally controlled
converters [31].

Figure 5.19 shows a general architecture of a ΣΔ modulator following
the “error-feedback” architecture [165], which has an advantage of including no
delays in the forward path from the high-resolution nHR-bit command uHR[k] to
the low-resolution command u[k] provided to the nDPWM -bit hardware DPWM
unit. The truncation block takes the nDPWM most-significant bits, while remaining
nHR − nDPWM represent the quantization noise. The quantization noise is filtered by
a digital filter 1 − NTF (z), where NTF (z) is the noise transfer function. The ΣΔ
modulator shifts the quantization noise to high frequencies, where it is filtered by
the low-pass action of the switched-mode power converter, thus leading to effective
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1 − NTF (z)
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+−

Figure 5.19 ΣΔ modular placed in front of a hardware digital pulse width modulator.

resolution improvements. In the second-order ΣΔ modulator,

NTF (z) =
(
1 − z−1)2

, (5.40)

1 − NTF (z) = 2z−1 − z−2. (5.41)

To illustrate an application of the second-order ΣΔ modulator, consider the example
discussed in Section 5.3.1, where it is found that the resolution of the 8-bit DPWM
is not high enough, leading to limit cycle oscillations, as shown in Fig. 5.10. When
a second-order ΣΔ modulator is placed in front of this nDPWM = 8-bit DPWM, the
command resolution is increased to nHR = 10 bits, and the resulting operating wave-
forms of the synchronous Buck converter are shown in 5.20.

Given the high-resolution command uHR , the ΣΔ modulator generates a pattern
in the lower resolution command u at the input of the hardware DPWM. The pattern is
such that the low-frequency average value of u equals the high-resolution command
uHR , while the spectrum of variations in u is shifted to high frequencies so that it is
filtered by the low-pass action of the power converter. As a result of the variations
in u, a jitter can be observed in the signal c(t), which controls switches in the power
converter. This jitter is low-pass filtered, and its effects are essentially invisible in
the converter current and voltage waveforms shown in Fig. 5.20. The output voltage
vo(t) is positioned inside the zero-error bin and no limit cycles are observed. The
effect of the effective resolution improvement is very similar to the effect of using a
higher resolution DPWM exemplified in Section 5.3.1, in the waveforms of Fig. 5.9.

The effective resolution improvements based on ΣΔ modulation have been
studied in [166], in relation to the hardware DPWM resolution, and the power-stage
filter corner frequency relative to the switching frequency. It is found that the
second-order ΣΔ modulation easily offers several bits of effective resolution
improvement.

5.4.3 A/D Converters

In the context of digital control of switched-mode power converters, the specifications
driving A/D converter implementations include the conversion time, which must be
much shorter than a switching period, and the resolution, which must be high enough
to achieve precise regulation. On the other hand, linearity or wide conversion range
may be compromised in order to reduce the A/D complexity. It should be noted that
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Figure 5.20 Operating waveforms in the synchronous Buck converter example in
Section 5.3.1 using 8-bit DPWM and a second-order ΣΔ modular to increase the effective
resolution to 10 bits.

these specifications differ from the requirements in standard A/D converters target-
ing signal-processing, open-loop sensing, or slow control system applications [167],
which is why various A/D realizations targeting digital control of switched-mode
converters have received attention.

In all examples considered so far, a standard A/D characteristic is assumed,
where a signal is sampled and converted over a wide linear range, and the quantized
signal is then compared to a digital setpoint reference Vref , as shown in Figs. 5.1 and
5.2. As an alternative, Fig. 5.21 shows a windowed-flash A/D converter that meets
the converter control-loop requirements using a small number of analog comparators
[26]. An analog signal vo is compared to a set of levels q(A/D) apart and centered
around an analog reference Vref . The comparator outputs represent the error signal
in what is commonly referred to as the “thermometer code.” A digital encoder then
outputs a standard binary representation of the error, which is then sampled by a
system clock to produce the digital error signal e[k]. The conversion time is short, as
it consists only of propagation delays of the comparators and the encoder. The width
of the linear conversion range is centered around Vref is determined by the number of
comparators employed. The conversion range can be restricted to as few as three A/D
output levels (+1, 0, and −1), which allows the windowed-flash implementation with
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Figure 5.21 Windowed-flash A/D converter.

only two comparators [24]. More generally, the conversion range is designed to be at
least as wide as the expected deviations in the regulated signal when the closed-loop
controlled converter is exposed to expected disturbances and transients.

A number of variations in the windowed-flash architecture have been
explored. For example, a nonuniform windowed-flash A/D characteristic can be
programmed by setting the comparison levels in order to improve the converter
dynamic responses [71]. Targeting custom-integrated circuit implementations
in digital CMOS processes, delay-line-based A/D converters with windowed
characteristics, are described in [12, 21, 22, 32]. Instead of analog comparators,
the voltage-dependent delay characteristic of logic gates is used to perform
voltage-to-delay and delay-to-digital conversion. A similar approach, using a
ring-oscillator A/D and targeting very low-power converters for mobile applications,
has been described in [27]. As another alternative for A/D circuit realization,
threshold inverter quantization (TIQ) has been proposed in [35]. In the TIQ A/D
approach, logic inverters with programmed thresholds replace analog comparators
of the windowed-flash approach, which enables fast conversion and asynchronous
sampling in a high-performance digital hysteretic controller.

A/D implementation approaches have also been developed based on the spe-
cific ripple characteristics of converter waveforms to simplify the A/D conversion or
improve the effective resolution. For example, the digital controller in [168] employs
a single comparator and a counter, whereas the digital controller architecture in [66]
is based on single-comparator sensing in combination with D/A converters used
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to set the comparison thresholds. In power-factor correction (PFC) applications,
a single-comparator voltage A/D has been proposed, based on the output voltage
ripple [169]. The concept has been extended to inductor current sensing in [170].

5.5 SUMMARY OF KEY POINTS

• A/D and DPWM quantizations introduce nonlinear effects, which may result
in steady-state movements of the system state-space trajectory often referred to
as limit cycling.

• In the presence of A/D and DPWM quantizations, a dc steady-state solution
may not exist in a digitally controlled converter, a situation that results in
limit-cycle oscillations.

• The basic no-limit-cycling conditions are formulated to guarantee the existence
of a dc steady-state solution. The conditions include a requirement that the
equivalent DPWM resolution is better than the equivalent A/D resolution, as
well as a requirement that the control loop must include an integral action with
an upper limit on the integral gain.

• High-resolution DPWM and A/D converters are available for digital control
applications. High-resolution DPWM implementation techniques include
delay-line and hybrid approaches, as well as effective resolution improvements
using ΣΔ modulation.



C H A P T E R 6
COMPENSATOR
IMPLEMENTATION

In previous chapters, the compensator design is formulated from a system-level per-
spective. Focusing on PID compensators, the main outcome of the design procedure
in Chapter 4 is the z-domain transfer function of the compensator

Gc(z) � û(z)
ê(z)

= Kp +
Ki

1 − z−1 + Kd

(
1 − z−1), (6.1)

or, equivalently, of the associated difference equations governing the controller
behavior

up[k] = Kpe[k],

ui[k] = ui[k − 1] + Kie[k],

ud[k] = Kd(e[k] − e[k − 1]),

u[k] = up[k] + ui[k] + ud[k].

(6.2)

Both (6.1) and (6.2) are completely defined once the vector of coefficients K =[
Kp,Ki,Kd

]T
is specified.

This chapter is devoted to compensator implementation, which refers to trans-
lating (6.2) into a form suitable for its physical realization:

• In software-based controllers, (6.2) is converted into an algorithm, usually
coded in a high-level programming language such as C.

• In hardware-based controllers, (6.2) is converted into a digital circuit consisting
of a combination of digital arithmetic blocks and registers. The mainstream and
the most portable way for low-level controller description is based on the use
of a hardware description language (HDL) such as VHDL or Verilog.

This chapter covers essential aspects of implementation of hardware-based
compensators, which are the solutions most commonly adopted in high-frequency
dc–dc applications. To some extent, however, considerations developed in this
chapter also apply to software-based compensator realizations.

Digital Control of High-Frequency Switched-Mode Power Converters, First Edition.
Luca Corradini, Dragan Maksimović, Paolo Mattavelli, and Regan Zane.
© 2015 The Institute of Electrical and Electronics Engineers, Inc. Published 2015 by John Wiley & Sons, Inc.
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There are two phases of the implementation process, namely, the coefficients
quantization and the fixed-point implementation of the controller:

• Coefficients quantization is the round-off process by which the vector of
coefficients K is represented using a finite number of bits. This step has the
effect of altering the compensator transfer function actually realized with
respect to the one originally designed. As a result, the implemented system
loop gain T̃ (z) differs from the target loop gain T (z) determined from the
system-level design step. Figure 6.1 exemplifies possible effects of coefficient
quantization on the implemented system loop gain T̃ (z) for the synchronous
Buck converter control design examined in the previous chapters. With a
sufficiently fine quantization, the implemented loop gain closely resembles
the one designed in Chapter 4, as exemplified by the T̃1(z) responses in
Fig. 6.1. However, as quantizations of the compensator gains are made coarser,
differences arise. An excessively coarse quantization on the proportional and
derivative gains inevitably leads to severe bandwidth and phase margin errors,
which impact closed-loop system dynamics and may even result in instability,
as is the case for the T̃2(z) responses in Fig. 6.1. On the other hand, excessive
quantization of the integral gain can lead to low-frequency deviations and
can degrade controller regulation and disturbance rejection capabilities. In
the situation depicted—T̃3(z) responses in Fig. 6.1—the relative error in the
low-frequency gain is around 20%.
Selection of the required coefficient resolution is guided by suitable constraints
aimed at preserving the designed small-signal loop gain responses. Two
constraints are considered in this chapter, one quantifying the tolerable loop
gain error at the target crossover frequency ωc and the other related to the
low-frequency region ω → 0. If T̃ (z) is the actual system loop gain and
T (z) represents the target—unquantized—loop gain, the crossover frequency
constraint can be formulated as

Constraint I:

∣∣∣|T̃ (z)| − 1
∣∣∣
ω=ωc

< εc∣∣∣∠T̃ (z) − ∠T (z)
∣∣∣
ω=ωc

< αc

, (6.3)

where εc and αc are design constraints on the tolerable magnitude and phase
deviation, respectively. Similarly, the constraint on the low-frequency loop gain
magnitude can be expressed as

Constraint II:

∣∣∣∣∣ |T̃ (z)| − |T (z)|
|T (z)|

∣∣∣∣∣
ω→0

< ε0 , (6.4)

where ω → 0 implies that the left-hand side of the constraint is to be taken in
its limit value at dc.
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Figure 6.1 Effects of coefficient quantization on the system loop gain: adequate
quantization (T̃1(z)), excessively coarse Kp and Kd quantization (T̃2(z)), and excessively

coarse Ki quantization (T̃3(z)).

• The fixed-point implementation step formulates the physical realization of the
control law, where a finite number of bits is available to perform control opera-
tions. Fixed-point arithmetic is emphasized, in contrast to floating-point arith-
metic, primarily because of its much wider applicability in both hardware-based
and software-based implementations in digital power electronics applications.
A goal of this step is to define a finite precision controller whose behavior neg-
ligibly departs from the ideal controller determined in the system-level design
step. This entails making round-off and truncation effects negligible, as well as
avoiding signal saturations.

Coefficient quantization is discussed in Section 6.2, with a design example
in Section 6.3. The analysis developed in this section applies equally well to
hardware-based and software-based compensators. Section 6.4 discusses fixed-point
controller implementation for hardware-based compensators, which entails different
considerations than those involved when dealing with software-based controllers.

The notations employed in this chapter and the basic aspects of fixed-point
arithmetic and VHDL manipulation of binary two’s complement (B2C) quantities
are described in Appendix B.
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6.1 PID COMPENSATOR REALIZATIONS

The issue of compensator implementation is closely related to how the compensa-
tion law is realized in hardware. As known from the field of digital filter design, any
given transfer function has many realizations [8], each having a different hardware
complexity and sensitivity to coefficient round-off.

Equation (6.1) directly leads to the parallel implementation of the PID structure
depicted in Fig. 6.2. The transfer function of the parallel realization is denoted as
GPID(z;K), K being the vector of the proportional, integral, and derivative gains,

GPID(z;K) � Kp +
Ki

1 − z−1 + Kd(1 − z−1), K �
[
Kp,Ki,Kd

]T
.

(6.5)
Along with the parallel form, two other important realizations of the PID struc-

ture are considered. The direct structure, or direct-II form as it is more precisely
referred to in [8], is illustrated in Fig. 6.3 and denoted as

GPID(z; b) � b0 + b1z
−1 + b2z

−2

1 − z−1 , b � [b0, b1, b2]
T . (6.6)

e[k]

ud[k]

up[k]

ui[k]

u[k]uPID [k]

+

+

+−

z−1

z−1

Ki

Kp

Kd

Figure 6.2 Parallel realization of a digital PID compensator.

e[k] w[k] u[k]uPID [k]
+ +

+

z−1

z−1

b0

b1

b2

Figure 6.3 Direct realization of a digital PID compensator.
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Figure 6.4 Cascade realization of a digital PID compensator.

In the time domain, the direct realization translates into the set of difference equations

w[k] = w[k − 1] + e[k],

u[k] = b0w[k] + b1w[k − 1] + b2w[k − 2].
(6.7)

The transfer function of the cascade structure depicted in Fig. 6.4 is

GPID(z; c) � K

1 − z−1

(
1 + cz1

z−1) (
1 + cz2

z−1) , c �
[
K, cz1

, cz2

]T
,

(6.8)
corresponding, in the time domain, to

wi[k] = e[k] + wi[k − 1],

w1[k] = wi[k] + cz1
wi[k − 1],

w2[k] = w1[k] + cz2
w1[k − 1],

u[k] = Kw2[k].

(6.9)

A quantization/saturation block is cascaded to each of the structures depicted
in Figs. 6.2–6.4. As indicated in Fig. 6.5, such block first quantizes the control com-
mand uPID [k] into a low-resolution signal matching the DPWM resolution and then
saturates the result against the maximum and minimum commands acceptable by the
DPWM unit.

In Chapter 4, equations (4.15) are provided for converting the p-domain
compensator design into a corresponding z-domain compensator expressed
in the parallel form. Table 6.1 completes the picture by providing conver-
sion formulas to convert the p-domain multiplicative form, defined by the

uPID [k] u[k]

uPID [k] u[k]

Truncation Saturation

ux[k]

Figure 6.5 Quantization/saturation block.
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TABLE 6.1 p-Domain to z-Domain Conversion Equations

Parallel Form GPID (z;K)

Kp = G′
PI∞G′

PD0

(
1 +

ωPI

ωPD
− 2ωPI

ωp

)

Ki = 2G′
PI∞G′

PD0
ωPI

ωp

Kd =
G′

PI∞G′
PD0

2

(
1 − ωPI

ωp

)(
ωp

ωPD
− 1
)

(6.10)

Direct Form GPID (z; b)

b0 =
G′

PI∞G′
PD0

2

(
1 +

ωPI

ωPD
+

ωp

ωPD
+

ωPI

ωp

)

b1 = G′
PI∞G′

PD0

(
ωPI

ωp

−
ωp

ωPD

)

b2 =
G′

PI∞G′
PD0

2

(
1 − ωPI

ωp

)(
ωp

ωPD
− 1
)

(6.11)

Cascade Form GPID (z; c)

K =
G′

PI∞G′
PD0

2

(
1 +

ωp

ωPD

)(
1 +

ωPI

ωp

)

cz1
=

ωPI

ωp

− 1

ωPI

ωp

+ 1

cz2
=

ωPD

ωp

− 1

ωPD

ωp

+ 1

(6.12)

parameters (G′
PI∞, G′

PD0, ωPI , ωPD , ωp), into the parallel, direct, or cascade
z-domain form. Note that these formulas already embed the inverse bilin-
ear transformation necessary to go back to the z-domain from the p-domain.
One may verify that the special cases of PI and PD compensators are
obtained, by letting

(
ωPD → ωp, G

′
PD0 → 1

)
and (ωPI → 0, G′

PI∞ → 1),
respectively.
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6.2 COEFFICIENT SCALING AND QUANTIZATION

Scaling and quantization are the two steps necessary to bring the compensator from
its system-level formulation to a form suitable for implementation.

Coefficient scaling adapts the compensator gains to the A/D and DPWM gains
present in the real system without altering the designed loop gain T (z). The approach
presented here, which is by no means the only option, is to scale the compensator
coefficients in such a way that both the error signal and the control command assume
the form of integer quantities. This choice, although somewhat arbitrary, is in line
with the presentation made in Appendix B, which interprets each B2C signal as an
integer.

Coefficient quantization, on the other hand, consists of a round-off of the com-
pensator gains so that they can be stored in finite-length binary words, a process that
invariably alters the compensator frequency response and therefore the loop gain. The
number of bits used to hard code the coefficients needs to be related, in a way that
has to be specified, to the quantization error on GPID(z).

Quantization effects associated with the compensator coefficients can be stud-
ied independently of the controller type—if hardwired or microprogrammed—and
only depend on the compensator structure that is to be realized. Considering first the
parallel form, scaling, and quantization amounts to successive manipulations on the
coefficient vector K:

K =

⎡
⎣ Kp

Ki

Kd

⎤
⎦ scaling−→ Ǩ =

⎡
⎢⎣ Ǩp

Ǩi

Ǩd

⎤
⎥⎦ quantization−→ K̃ =

⎡
⎢⎣ K̃p

K̃i

K̃d

⎤
⎥⎦ , (6.13)

which induces corresponding changes in the compensator transfer function:

GPID(z;K)
scaling−→ GPID(z; Ǩ)

quantization−→ GPID(z; K̃). (6.14)

The same can be stated for the direct form,

b =

⎡
⎣ b0

b1
b2

⎤
⎦ scaling−→ b̌ =

⎡
⎣ b̌0

b̌1
b̌2

⎤
⎦ quantization−→ b̃ =

⎡
⎣ b̃0

b̃1
b̃2

⎤
⎦ , (6.15)

GPID(z; b)
scaling−→ GPID(z; b̌)

quantization−→ GPID(z; b̃), (6.16)

and for the cascade form,

c =

⎡
⎣ K

cz1

cz2

⎤
⎦ scaling−→ č =

⎡
⎣ Ǩ

čz1

čz2

⎤
⎦ quantization−→ c̃ =

⎡
⎣ K̃

c̃z1

c̃z2

⎤
⎦ , (6.17)

GPID(z; c)
scaling−→ GPID(z; č)

quantization−→ GPID(z; c̃). (6.18)
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6.2.1 Coefficients Scaling

In Chapters 4 and 5, the A/D converter is assumed to produce a quantized signal
vs[k] having the same units as the sensed signal vs(t) and a quantization bin equal
to q

(A/D)
vs . In the controller implementation, the digital error is instead treated as an

integer signal ẽ[k] having unity quantization bin q
(A/D)
ẽ = 1.

Consider, for instance, the proportional action in the parallel structure

up[k] = Kpe[k], (6.19)

in which the regulation error e[k] has a granularity q
(A/D)
e = q

(A/D)
vs . Scaling of the

proportional gain is accomplished as

up[k] =
(
Kpq

(A/D)
vs

) (
e[k]

q
(A/D)
vs

)
︸ ︷︷ ︸

ẽ[k]

, (6.20)

where ẽ now has unity granularity q
(A/D)
ẽ = 1. The above-mentioned operation for-

mally attributes the A/D converter a gain equal to 1/q
(A/D)
vs and simultaneously scales

the proportional gain by q
(A/D)
vs .

In a similar way, in the previous chapters, the compensator design examples
assume a normalized DPWM carrier amplitude Nr = 1, which leads to an input con-
trol command u[k] ranging from 0 to 1, with a quantization bin equal to qu. A real
DPWM, on the other hand, accepts an input binary word ũ[k], which is more naturally
interpreted as an integer value ũ ranging from 0 to Nr − 1, Nr representing the word
for which D = 100%. For example, referring to the counter-based DPWM architec-
ture described in Sections 2.4 and Section 5.1, Nr is the number of DPWM clock
cycles per switching period. Rescaling of the compensator coefficients is accom-
plished by attributing the DPWM a gain equal to 1/Nr and redefining the control
command as

ũp[k] = Nrup[k] =
(
Kpq

(A/D)
vs

Nr

)
︸ ︷︷ ︸

Ǩp

ẽ[k], (6.21)

which amounts to multiplying the proportional gain by Nr. The quantization bin of
ũ is qũ = 1.

Summarizing, the coefficient scaling for a Nr = 1 design is accomplished by
the substitutions

Kp → Ǩp � λKp,

Ki → Ǩi � λKi,

Kd → Ǩd � λKd,

(6.22)
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Figure 6.6 Coefficient scaling and quantization: (a) system-level view of the compensator
as considered in the previous chapters and implementation-level view (b) before and (c) after
coefficients quantization. Signals granularities are also indicated.

or, more compactly,

K
scaling−→ Ǩ � λK , (6.23)

where

λ � q(A/D)
vs

Nr (6.24)

is the compensator scaling factor, which depends on the A/D characteristic and the
DPWM architecture.

As suggested by Fig. 6.6(a) and (b), result of the scaling process is the
translation of the system-level compensator GPID(z;K) into a corresponding
implementation-level compensator

GPID(z; Ǩ) = λGPID(z;K) . (6.25)
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On the other hand, the uncompensated loop gain scales to Ťu(z) = Tu(z)/λ
due to the equivalent gains attributed to the A/D converter and the DPWM. Therefore,

Ť (z) � GPID(z; Ǩ)Ťu(z)

= (λGPID(z;K))
(

Tu(z)
λ

)
= T (z)

⇒ Ť (z) = T (z) . (6.26)

As anticipated, the coefficient scaling does not alter the designed system loop gain
T (z).

Coefficient scaling for the direct and cascade realizations can be derived based
on similar reasoning,

b
scaling−→ b̌ � λb =

⎡
⎣ λb0

λb1
λb2

⎤
⎦ , (6.27)

c
scaling−→ č �

⎡
⎣ λK

cz1

cz2

⎤
⎦ . (6.28)

Observe that in the cascade form, only the component K of the coefficient vector c
is scaled.

6.2.2 Coefficients Quantization

Contrary to the scaling step, coefficients rounding does alter the system loop gain
T (z). As presented in Appendix B, Qn [ . ] represents the n-bit round-off map for
B2C quantities and dnc represents the absolute quantization error on c due to an n-bit
round-off. With these notations, the quantization of scaled coefficients (6.22) can be
written as

K̃ =

⎡
⎣ Qnp

[
Ǩp

]
Qni

[
Ǩi

]
Qnd

[
Ǩd

]
⎤
⎦ =

⎡
⎣ Ǩp + dnp

Ǩp

Ǩi + dni
Ǩi

Ǩd + dnd
Ǩd

⎤
⎦ = Ǩ + dǨ, (6.29)

with

dǨ �

⎡
⎣ dnp

Ǩp

dni
Ǩi

dnd
Ǩd

⎤
⎦ . (6.30)

Word lengths np, ni, and nd in (6.29) represent the unknowns in the coefficient quan-
tization problem. The objective is to determine these word lengths so as to satisfy the
design constraints expressed by (6.3) and (6.4).
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After coefficient quantization, referring to Fig. 6.6(c), the PID transfer function
and the system loop gain become

GPID(z; K̃) = K̃p +
K̃i

1 − z−1 + K̃d

(
1 − z−1), (6.31)

and
T̃ (z) = GPID(z; K̃)Ťu(z). (6.32)

A goal of this section is to formulate the quantization problem from a general perspec-
tive by establishing a link between the constraints (6.3) and (6.4) and the quantities

dGPID(z; Ǩ) � GPID(z; K̃) − GPID(z; Ǩ) (6.33)

and

δGPID(z; Ǩ) � dGPID(z; Ǩ)
GPID(z; Ǩ)

, (6.34)

which are the absolute and relative compensator sensitivity functions, respectively.
They quantify, in absolute or relative terms, the variation GPID(z; Ǩ) undergoes due
to the coefficient quantization process.

Combining (6.32) with (6.33) and (6.34), the expression for the quantized loop
gain becomes

T̃ (z) = Ťu(z)
(
GPID(z; Ǩ) + dGPID(z; Ǩ)

)
, (6.35)

and the relationship between T̃ (z) and T (z) can then be formulated as

T̃ (z) = T (z)
(
1 + δGPID(z; Ǩ)

)
. (6.36)

Consider now Constraint I in (6.3), and quantize the coefficient vector Ǩ so
as to limit

∣∣δGPID(z; Ǩ)
∣∣ to within a specified amount ε < 1 at the target crossover

frequency, ∣∣δGPID(z; Ǩ)
∣∣
ω=ωc

< ε < 1. (6.37)

With the aid of Fig. 6.7, one concludes that

1 − ε ≤
∣∣1 + δGPID(z; Ǩ)

∣∣
ω=ωc

≤ 1 + ε (6.38)

and
− arcsin (ε) ≤ ∠

(
1 + δGPID(z; Ǩ)

)∣∣
ω=ωc

≤ arcsin (ε). (6.39)
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Figure 6.7 Maximum phase of 1 + δGPID (z; Ǩ) at ω = ωc.

Therefore, from (6.36) and |T (z)|ω=ωc
= 1, one has

1 − ε ≤ |T̃ (z)| ≤ 1 + ε (6.40)

and
− arcsin (ε) ≤ ∠T̃ (z)|ω=ωc

− ∠T (z)|ω=ωc
≤ arcsin (ε). (6.41)

Note that a single constraint on
∣∣δGPID(z; Ǩ)

∣∣ at the target crossover frequency
induces the corresponding constraints on both the gain and the phase of T̃ (z) at
ω = ωc. Comparing the above-mentioned relationships with (6.3) leads to

εc = ε,

αc = arcsin (ε).
(6.42)

For instance, if ε = 1%, then the relative error of |T (z)| at ω = ωc is at most 1%,
while the phase error is at most equal to ±α = ± arcsin (0.01) ≈ ±0.57◦.

As for Constraint II in (6.4) on the low-frequency magnitude of T (z), similar
conclusions can be drawn. In particular, a constraint on

∣∣δGPID(z; Ǩ)
∣∣ at dc induces

a corresponding constraint on |T̃ (z)|,

∣∣δGPID(z; Ǩ)
∣∣
ω=0 < ε0 < 1 ⇒

∣∣∣∣∣ |T̃ (z)| − |T (z)|
|T (z)|

∣∣∣∣∣
ω=0

< ε0. (6.43)

Both constraints (6.3) and (6.4) can be enforced by selecting word lengths
(np, ni, nd) so as to limit

∣∣δGPID(z; Ǩ)
∣∣ at specific frequencies. This can be per-

formed either analytically or, more rapidly, via Matlab® scripting as exemplified in
the next section.
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Inset 6.1 – The Absolute Sensitivity Function

The absolute sensitivity function (6.33) can be approximated as the differential of
GPID(z; Ǩ) with respect to the components of the coefficient vector Ǩ,

dGPID(z; Ǩ) ≈ ∂GPID(z;K)
∂Kp

∣∣∣∣
K=Ǩ

dnp
Ǩp

+
∂GPID(z;K)

∂Ki

∣∣∣∣
K=Ǩ

dni
Ǩi

+
∂GPID(z;K)

∂Kd

∣∣∣∣
K=Ǩ

dnd
Ǩd. (6.44)

In the following, the above-mentioned approximation is indicated as

dGPID(z; Ǩ) ≈ ∂GPID(z;K)
∂K

∣∣∣∣
K=Ǩ

dǨ . (6.45)

Observe that whenever GPID(z; Ǩ) is linear in the coefficients Ǩ, then the
above-mentioned equation becomes exact. This is the case for the parallel and
the direct structures, in which the vector coefficients Ǩ and b̌ act linearly on the
compensator transfer function. For the cascade realization, on the other hand, the
dependence of GPID(z; č) on č is not linear, and the above-mentioned calculation
only approximates dGPID(z; č) when dč is small.

6.3 VOLTAGE-MODE CONTROL EXAMPLE:
COEFFICIENTS QUANTIZATION

The above-mentioned concepts are now employed to realize the PID compensator
for the synchronous Buck converter example examined in the previous chapters. All
three basic structures—parallel, direct, and cascade—are exemplified and compared.
In all cases, the constraints (6.3) and (6.4) are specified as

ε = 1% ⇒
{

εc = 1%
αc = arcsin (ε) ≈ 0.57◦ (Constraint I),

ε0 = 10% (Constraint II).

(6.46)

Equation (4.39) reports the PID compensator coefficients for the synchronous
Buck voltage-mode control designed in Chapter 2. For the same example, an 8-bit
A/D converter over a quantization range of 2 V and a 10-bit DPWM are found to
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satisfy the basic no-limit-cycling conditions in Section 5.3. The A/D converter quan-
tization step is therefore

q(A/D)
vs

≈ 7.8 mV. (6.47)

As for the DPWM, regardless of its implementation, one can view its operation
as based on an equivalent carrier ranging from 0 to Nr − 1, with

Nr = 210 = 1024. (6.48)

Hence, the compensator scaling factor is

λ = q(A/D)
vs

Nr = 8 V. (6.49)

6.3.1 Parallel Structure

The scaled coefficients become

Ǩp � λKp ≈ 24.76,

Ǩi � λKi ≈ 0.5961,

Ǩd � λKd ≈ 190.5.

(6.50)

An expression of the absolute sensitivity function of the parallel structure is

dGPID(z; Ǩ) =
∂GPID(z;K)

∂K

∣∣∣∣
K=Ǩ

dǨ

= dnp
Ǩp +

dni
Ǩi

1 − z−1 + dnd
Ǩd

(
1 − z−1) , (6.51)

which resembles a PID-like transfer function having gains equal to the round-off
errors on Ǩp, Ǩi, and Ǩd.

Consider first the low-frequency constraint. From (6.51), the expression of the
relative sensitivity function at ω = 0 depends solely on the integral gain quantization,

∣∣δGPID(z; Ǩ)
∣∣
ω=0 =

∣∣δni
Ǩi

∣∣ =

∣∣dni
Ǩi

∣∣
Ǩi

. (6.52)

Therefore, ni can be immediately determined from Constraint II. A minimum of 4
bits are necessary in order to satisfy

∣∣δni
Ǩi

∣∣ < ε0 = 10%,

K̃i = Q4
[
Ǩi

]
= 01012 × 2−3 = 0.62510. (6.53)
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Figure 6.8 Compensator relative sensitivity function
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(parallel form).

Such choice yields a low-frequency relative error

∣∣∣∣∣ |T̃ (z)| − |T (z)|
|T (z)|

∣∣∣∣∣
ω=0

≈ 4.8% (6.54)

in the loop gain magnitude.
As for the crossover frequency Constraint I, note that the PID-like structure of

(6.51) suggests that dni
Ǩi has negligible impact at the crossover frequency compared

with dnp
Ǩp and dnd

Ǩd. With this in mind, maintain the selected quantization for K̃i

and investigate how δGPID(z; Ǩ) depends on np and nd. The relative compensator
sensitivity function, evaluated at ω = ωc, is plotted in Fig. 6.8. In particular, the figure
highlights constant error contours corresponding to 0.5%, 0.75%, 1%, and 10%. From
this plot, one quickly recognizes that 3 bits are sufficient to represent both Ǩp and
Ǩd,

K̃p � Q3
[
Ǩp

]
= 0112 × 23 = 2410,

K̃d � Q3
[
Ǩd

]
= 0112 × 26 = 19210.

(6.55)

With the above-mentioned choices, the magnitude and phase errors of T (z) at
ω = ωc are ∣∣∣|T̃ (z)|ω=ωc

− |T (z)|ω=ωc

∣∣∣ ≈ 0.75%,

∠T̃ (z)|ω=ωc
− ∠T (z)|ω=ωc

≈ 0.36◦.
(6.56)

and the corresponding compensator magnitude and phase responses are shown in
Fig. 6.9. In the signal notation presented in Appendix B, the above choices for
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Figure 6.9 Bode plots of GPID (z; Ǩ) and GPID (z; K̃), np = nd = 3, ni = 4.

(K̃p, K̃i, K̃d) can be expressed as

[
K̃p

]3

3
= 0112,[

K̃i

]4

−3
= 01012,[

K̃d

]3

6
= 0112.

(6.57)

6.3.2 Direct Structure

From Table 6.1, the coefficients b0, b1, and b2 of the direct form can be derived from
the p-domain parameters using (6.11). The result is

b0 ≈ 26.982,

b1 ≈ −50.72,

b2 ≈ 23.8.

(6.58)
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In the direct form, scaling of the compensator amounts to scaling all the com-
ponents of the coefficient vector by λ,

b0 → b̌0 � λb0 ≈ 215.85,

b1 → b̌1 � λb1 ≈ −405.76,

b2 → b̌2 � λb2 ≈ 190.5.

(6.59)

The scaled form of the compensator transfer function is therefore

GPID(z; b̌) =
b̌0 + b̌1z

−1 + b̌2z
−2

1 − z−1 , (6.60)

and the absolute sensitivity function of GPID(z; b̌) is

dGPID(z; b̌) =
∂GPID(z; b)

∂b

∣∣∣∣
b=b̌

db̌

=
dn0

b̌0 + dn1
b̌1z

−1 + dn2
b̌2z

−2

1 − z−1 , (6.61)

where n0, n1, and n2 are the word lengths used to express the quantized coefficients
b̃0, b̃1, and b̃2, respectively.

Assume now n0 = n1 = n2 = nb and evaluate the compensator relative sensi-
tivity function at both ω = 0 and ω = ωc. Figure 6.10 illustrates the dependence of∣∣δGPID(z; b̌)

∣∣
ω=0 and

∣∣δGPID(z; b̌)
∣∣
ω=ωc

on nb. Observe that a minimum of nb = 9
bits are required to satisfy the ε = 1% constraint, whereas the ε0 = 10% constraint
on the low-frequency loop gain magnitude requires nb = 12 bits. nb = 12 therefore
represents the required resolution for the compensator coefficients, which evaluate to

b̃0 = Q12
[
b̌0

]
= 0110101111112 × 2−3 = 215.87510,

b̃1 = Q12
[
b̌1

]
= 1001101010012 × 2−2 = −405.7510,

b̃2 = Q12
[
b̌2

]
= 0101111101002 × 2−3 = 190.510.

(6.62)

A more careful examination of this result shows that coefficient b̃2 can actually be
stored in a 10-bit word,

b̃2 = 0101111101002 × 2−3

= 01011111012 × 2−1

= 190.510. (6.63)
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Figure 6.10 Compensator relative sensitivity function
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∣δGPID (z; b̌)

∣
∣ (in %) at ω = 0 and

ω = ωc (direct form).

The above-mentioned results can be summarized as follows:[
b̃0

]12

−3
= 0110101111112,[

b̃1

]12

−2
= 1001101010012,[

b̃2

]10

−1
= 01011111012.

(6.64)

A comparison between Bode plots of GPID(z; b̌) and GPID(z; b̃) with nb = 12
is illustrated in Fig. 6.11. In the case of direct realization, the error in the frequency
response away from the crossover frequency ωc tends to be more severe than what is
observed for the parallel realization in Fig. 6.9, and the required coefficient resolution
is ultimately dominated by the low-frequency constraint. Such higher sensitivity of
direct forms to coefficient round-off is well known from the literature, which is why
the direct realization of a PID compensator should in general be avoided.

6.3.3 Cascade Structure

As a last example, consider the cascade realization of the compensator. The coeffi-
cient vector c =

[
K, cz1

, cz2

]T
can be derived from the p-domain design using (6.12),

K ≈ 26.98,

cz1
≈ −0.9691,

cz2
≈ −0.9107.

(6.65)
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Figure 6.11 Bode plots of GPID (z; b̌) and GPID (z; b̃), nb = 12.

In the cascade realization, scaling only concerns the coefficient K, as the zeros
of the unscaled and scaled compensators must coincide. Therefore

K → Ǩ � λK ≈ 215.85,

cz1
→ čz1

� cz1
≈ −0.9691,

cz2
→ čz2

� cz2
≈ −0.9107.

(6.66)

The scaled version of the cascade form is

GPID(z; č) =
Ǩ

1 − z−1

(
1 + čz1

z−1) (
1 + čz2

z−1), (6.67)
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and its absolute sensitivity function is

dGPID(z; č) ≈ ∂GPID(z; c)
∂c

∣∣∣∣
c=č

dč

=

(
1 + čz1

z−1
) (

1 + čz2
z−1

)
1 − z−1 dnk

Ǩ

+Ǩ
1 + čz2

z−1

1 − z−1 z−1dnz1
čz1

+Ǩ
1 + čz1

z−1

1 − z−1 z−1dnz2
čz2

. (6.68)

As anticipated in Inset 6.1, the cascade structure is not linear with respect to č, and
the above-mentioned approximation provides a correct estimate of the absolute error
on GPID(z; č) only when dč is small.

Assume now that both čz1
and čz2

are quantized with the same number of bits
nz1

= nz2
= nz , whereas nk bits are employed to round-off the compensator gain

Ǩ. Next, evaluate the compensator relative sensitivity function at both ω = 0 and
ω = ωc and consider their dependence on nk and nz .

Contour maps of |δGPID(z; č)|ω=0 and |δGPID(z; č)|ω=ωc
are depicted in

Fig. 6.12(a) and (b), respectively. From the plots, one concludes that nk = 3 and
nz = 6 bits would satisfy the low-frequency Constraint II, but not the crossover
frequency Constraint I, which would require 6 bits for all the coefficients. Therefore,
choose nk = nz = 6 bits and evaluate the quantized compensator coefficients as

K̃ = Q6
[
Ǩ

]
= 0110112 × 23 = 21610,

c̃z1
= Q6

[
čz1

]
= 1000012 × 2−5 = −0.9687510,

c̃z2
= Q6

[
čz2

]
= 1000112 × 2−5 = −0.9062510.

(6.69)

In signal notation, we have [
K̃

]6

3
= 0110112,[

c̃z1

]6
−5 = 1000012,[

c̃z2

]6
−5 = 1000112.

(6.70)

Figure 6.13 compares the Bode plots of GPID(z; č) and GPID(z; c̃) with such
quantization.

In general, the cascade form provides a more uniform round-off error through-
out the frequency span and a slightly larger sensitivity to coefficient quantization
compared to the parallel form. This usually leads to longer required word lengths for
coefficient representation. However, the cascade form offers direct access to both the
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Figure 6.12 Compensator relative sensitivity function |δGPID (z; č)| (in %) at (a) ω = 0 and
(b) ω = ωc (cascade form).

compensator zeros and its overall gain. This makes the cascade structure very conve-
nient in implementing an on-line-programmable compensator frequency response.

�

�

�

�
Inset 6.2 – Evaluating the Sensitivity Function Using Matlab®

Contour plots such as those depicted in Figs 6.8 and 6.12 are generated using
Matlab®in the following manner.
Consider, for definiteness, the parallel realization. Start by evaluating scaled coef-
ficients Ǩp, Ǩi, and Ǩd from Kp, Ki, and Kd and by evaluating the unquantized
compensator transfer function GPID(z; Ǩ):
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Figure 6.13 Bode plots of GPID (z; č) and GPID (z; c̃), nk = nz = 6.

Kps = Kp*(qAD*N_r);
Kis = Ki*(qAD*N_r);
Kds = Kd*(qAD*N_r);
Gczs = Kps+Kis/(1-z^-1)+Kds*(1-z^-1);

Next, quantize the integral gain using function Qn reported in Appendix B:

wki = Qn(Kis,4);

Calculation of the compensator relative sensitivity function can then be accomplished
by evaluating (6.51) on a discrete grid of (np, nd) pairs defined by two vectors np_v
and nd_v.

np_v = [1:1:8];
nd_v = [1:1:8];

err = zeros(length(nd_v),length(np_v));

for ip=1:length(np_v)
wkp = Qn(Kps,np_v(ip));
for id=1:length(nd_v)

wkd = Qn(Kds,nd_v(id));
Gcz = wkp.xq+wki.xq/(1-z^-1)+wkd.xq*(1-z^-1);
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dGcz = wkp.dx+wki.dx/(1-z^-1)+wkd.dx*(1-z^-1);
err(id,ip) = 100*abs(freqresp(dGcz,wc)/freqresp(Gczs,wc));

end;
end;

where wc represents the angular crossover frequency ωc. Values of δGPID(z; Ǩ) eval-
uated at ω = ωc are now stored into matrix err. Contour plots can then be generated
using Matlab® contour command.

6.4 FIXED-POINT CONTROLLER IMPLEMENTATION

A starting point for the fixed-point implementation step is the block diagram reported
in Fig. 6.14, obtained from Fig. 6.2 after the original compensator coefficients have
been quantized. In the following, quantization of ũPID into ũ is modeled as truncation,

ũ[k]

ẽ[k]

ũd[k]

ũp[k]

ũi[k]

ũPID [k]

ũi,1[k]

ẽ1[k]

+

+

+−

z−1

z−1

K̃i

K̃p

K̃d

Figure 6.14 Parallel PID realization after coefficient scaling and quantization.
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ũ[k]ũPID [k]

w̃1[k]
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z−1

b̃0

b̃1
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Figure 6.15 Direct PID realization after coefficient scaling and quantization.

ũPID [k]ẽ[k] ˜ ˜ ˜wi[k] ]w1[k w2[k] ũ[k]
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c̃z1 c̃z1

K̃

Figure 6.16 Cascade PID realization after coefficient scaling and quantization.
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that is, as removal of an appropriate number of least significant digits from the control
command.

The fixed-point implementation step is strongly dependent on the controller tar-
get platform. As anticipated in the introduction of this chapter, emphasis is given here
on custom controller design for hardware-based compensators. In this context, the
designer has the capability to fully tailor every aspect of the controller implementa-
tion according to the application. Resolution, clocking scheme, type, and complexity
of the controller arithmetic blocks are all degrees of freedom available to the designer.
On the other hand, in a software-based (microcontrolled) design, the hardware infras-
tructure is fixed, and the implementation step becomes the task of making the best
use of an already existing digital processor.

Perhaps the most distinctive difference between software-based and
hardware-based designs is the existence, in the former, of a well-specified word
length for manipulating digital signals. In a 16-bit microcontroller architecture, for
instance, the arithmetic logic unit (ALU) handles 16-bit operands and produces
16-bit results. The designer of a software program must normalize signals in the
controller structure in such a way that truncation effects are negligible, and signal
saturations do not occur.

On the other hand, in a hardware-based design, every arithmetic operation can
be designed with a custom number of bits. The word length is no longer constrained
by the hardware platform but becomes a degree of freedom the designer can tailor
to the specific application requirements. In this case, an objective of the fixed-point
implementation step is to establish, for every signal x̃[k] in the controller realization,
the number of bits n and the scale q required for its B2C representation,

[x̃]nq , (6.71)

an operation often referred to as word length determination or word length estimation.

6.4.1 Effective Dynamic Range and Hardware Dynamic
Range

Crucial to the determination of both n and q is the estimation of the signal’s dynamic
range. In short, word length n must be sufficiently large to accommodate for the
typical excursion of the signal during a “severe” disturbance, whereas the scale q must
be sufficiently fine not to cause abnormal controller operation due to quantization
effects.

The effective dynamic range of x̃, or simply dynamic range, is here defined as
the ratio between the signal’s upper bound 	x̃
 and its lower bound �x̃�

DReff [x̃] � 20 log10

(
	x̃

�x̃�

)
. (6.72)
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• The upper bound 	x̃
 of x̃ represents the largest value reached by |x̃|. An esti-
mate of 	x̃
 can be drawn from the most severe transient the control system
is expected to handle. Guidelines for a first-cut estimation of a signal’s upper
bound are mentioned in Section 6.4.2.

• The lower bound �x̃� of x̃ represents the smallest nonzero value of |x̃| that
needs to be resolved for proper control operation. Estimation of �x̃� is often
crucial to the hardware optimization of the controller and is best performed via
a simulation-based investigation.

Suppose now that x̃ is to be represented by a B2C quantity [x̃]nq , where both
n and q are to be determined. By hardware dynamic range of [x̃]nq , one refers to the
ratio between a signal’s upper bound and its scale,

DRhw [x̃]nq � 20 log10

(
	x̃

2q

)
. (6.73)

Observe that the maximum hardware dynamic range of x̃ is uniquely limited by n:

DRhw [x̃]nq ≤ 20 log10

(
2n−12q

2q

)
= (20 log10 2) (n − 1)

≈ 6.02 (n − 1). (6.74)

The effective dynamic range is a property of a signal, and it measures the dis-
tance between the smallest and largest values the signals assumes during its evolution.
On the other hand, the hardware dynamic range is a property of a B2C quantity and is
limited by the hardware number of bits. The idea is to design the hardware dynamic
range so as to entirely host the signal, that is, accurately represent its lower bound
�x̃� without appreciable quantization effects, and simultaneously represent its largest
value without saturations.

Establishing a link between the effective and hardware dynamic ranges is rela-
tively simple. First, choose a scale 2q so as to represent the signal’s lower bound with
the required accuracy,

�x̃� = [�x̃�]lq × 2q. (6.75)

The hardware dynamic range is then equal to the effective dynamic range of x̃, plus
the hardware dynamic range required to represent �x̃�,
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DRhw [x̃]nq = 20 log10

(
	x̃

2q

)

= 20 log10

(
	x̃

�x̃�

�x̃�
2q

)

= DReff [x] + DRhw [�x̃�]lq . (6.76)

From (6.74), the minimum number of bits required to completely host the hard-
ware dynamic range DRhw [x̃]nq is

n = 1 + ceil

(
DRhw [x̃]nq
20 log10 2

)
, (6.77)

where ceil(c) denotes the smallest integer greater than or equal to c.
In practice, the above-mentioned concepts are applied as follows:

• Determine the signal’s upper and lower bounds 	x̃
 and �x̃� either analytically
or with the aid of computer simulations.

• Select the scale 2q in order to represent �x̃� with sufficient accuracy.

• Determine the required hardware dynamic range from (6.73).

• Determine the required word length n from (6.77).

6.4.2 Upper Bound of a Signal and the L1-Norm

Let x̃[k] be a generic signal in the controller implementation. Initially, (k < 0) e[k] =
0, and x̃[k] is constant at some X̃0. Evolution of x̃[k] in response to ẽ[k] can be written
in terms of a certain impulse response hx[k],

x̃[k] = X̃0 +
k∑

i=0

hx[k − i]ẽ[i]. (6.78)

Examine two cases:

• Unbiased signals are such that X̃0 = 0, examples being the proportional and
derivative terms ũp and ũd.

• Biased signals are such that X̃0 = 0. In the standard PID structure examined in
this book, a controller signal is biased if and only if hx[k] contains the integral
action, that is, if signal x̃[k] is cascaded to the integrator.

An upper bound of an unbiased signal can be derived analytically under the
assumption that the digitized error signal ẽ[k] remains bounded, a condition expressed
as

|ẽ[k]| ≤ ẽmax ⇒ 	ẽ
 = ẽmax . (6.79)
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From (6.79), an upper bound for x̃[k] is then

|x̃[k]| ≤
∣∣∣∣∣

k∑
i=0

hx[k − i]ẽ[i]

∣∣∣∣∣
≤

k∑
i=0

|hx[k − i]| |ẽ[i]|

≤
(

k∑
i=0

|hx[i]|
)
	ẽ


≤
(

+∞∑
i=0

|hx[i]|
)
	ẽ
, (6.80)

or
|x̃[k]| ≤ ‖hx‖1	ẽ
, (6.81)

where ‖hx‖1 denotes the L1-norm of hx,

‖hx‖1 �
+∞∑
i=0

|hx[i]|. (6.82)

Notice that the right-hand side sum always converges, as hx does not contain the
integral action.

In conclusion, the upper bound estimation of unbiased signals according to the
L1-norm criterion implies

	x̃
 = ‖hx‖1	ẽ
 . (6.83)

The L1-norm criterion for establishing a signal’s upper bound represents, in general, a
very conservative approach to word length estimation. The reason is that the L1-norm
upper bound is evaluated from the worst-case input sequence that maximizes |x̃|. Such
sequence is hardly, if ever, encountered during the system operation. Nonetheless,
the L1 criterion can represent the starting point for a more refined simulation-based
analysis.

For biased signals, the situation is usually more complex because the
steady-state value X̃0 of x̃[k] depends on the converter operating point and, in
general, changes with it. A first-cut estimation of the signal’s upper bound considers
the range of variation of X̃0 as the system duty cycle varies between 0 and 1, that is,
as the steady-state controller output Ũ varies between 0 and Nr − 1,

	x̃
 = max
0≤Ũ≤Nr−1

X̃0(Ũ) . (6.84)
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Note, however, that additional overhead must sometimes be allowed with respect to
the steady-state estimation due to the signal’s dynamics causing potential saturations
during transient events.

6.5 VOLTAGE-MODE CONVERTER EXAMPLE:
FIXED-POINT IMPLEMENTATION

In this section, fixed-point realizations of the three basic PID structures considered in
this chapter are discussed, continuing the study of the synchronous Buck converter
voltage-mode control example.

It is first necessary to clarify how the digitized error signal ẽ is computed with
the aid of Fig. 6.17, which refers, for ease of representation, to a hypothetical 3-bit
A/D converter operating over a full-scale range of 2 V. It is assumed here that the
A/D converter outputs the digitized version of the sampled voltage vs as an unsigned
binary word and that the digitized output ranges from 0002 to 1112 as the analog A/D
input vs ranges from 0 to 2 V.

The A/D output is first converted into a positive B2C word [ṽs]
4
0 by padding the

MSB with a 0. Then, the error is calculated by subtracting the B2C-converted A/D

output from the digital set point, the latter also expressed as a 4-bit B2C word
[
Ṽref

]4

0
,

[ẽ]40 ⇐
[
Ṽref

]4

0
− [ṽs]

4
0 . (6.85)

In the synchronous Buck converter example, an 8-bit A/D converter with a
2-V full-scale range is used. Therefore,

[ẽ]90 ⇐
[
Ṽref

]9

0
− [ṽs]

9
0 . (6.86)
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Figure 6.17 Digital error calculation from the A/D output for a 3-bit A/D converter.
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A 10-bit DPWM is employed in the considered example. The control command
ũ is a biased signal ranging from 0 to Nr − 1 = 102310 with a granularity qũ = 1.
Hence, ũ can be represented over a scale 20, while the required hardware dynamic
range and word length are

DRhw [ũ]n0 = 20 log10
102310

20 ≈ 60.2 dB

⇒ n = 1 + ceil

(
DRhw [ũ]n0
20 log10 2

)
= 11.

(6.87)

Controller output ũ is then represented by an 11-bit word over a scale 20,

[ũ]11
0 . (6.88)

Observe that an extra bit appears because the represented range of a B2C quantity is
always bipolar. In practice, ũ is guaranteed to remain in the positive half range by the
output limiter block, and the extra bit is dropped before the signal is latched by the
10-bit DPWM.

Next, identify the worst-case transient condition for this considered application
example. Figure 6.18 depicts the digitized error signal during a 0 A → 5 A → 0 A
sequence of step-load transients. The simulation is carried out with Matlab® includ-
ing both A/D and DPWM quantizations and employing quantized coefficients K̃p,
K̃i, and K̃d determined in Section 6.3.1. On the other hand, control calculations are
simulated with the full Matlab® floating-point precision. Treating this transient as a
worst-case reference, an upper bound

	ẽ
 = 7 LSB (6.89)

for the digitized error signal is assumed. In general, startup behavior or other types
of transients may impact the worst-case error signal.
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(L
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) ẽ[k]

ẽ = 7 LSB’s

Figure 6.18 Digitized error signal during a 0 A → 5 A → 0 A step-up/step-down load
transient.
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6.5.1 Parallel Realization

Figure 6.14 reports the parallel PID realization structure after the coefficient quan-
tization process. Proportional, integral, and derivative terms during the 0 A → 5 A
→ 0 A step load transient treated as the worst-case scenario are shown in Fig. 6.19.
Observe that both ũp and ũd are unbiased signals, whereas ũi is biased.

Consider first the proportional term ũp,

ũp[k] = K̃pẽ[k]. (6.90)

Owing to the granularity of ẽ being qẽ = 1, ũp always remains a multiple of K̃p =
2410. Lower bound of ũp is then

�ũp� = K̃p =
[
K̃p

]3

3︸ ︷︷ ︸
0112

×23, (6.91)

as per (6.57). The scale of �ũp� is therefore equal to that of K̃p, or 23. Representing ũp

on a finer scale would not improve accuracy of the product, whereas a coarser scale
would inevitably lead to an equivalent truncation of K̃p, which should be avoided.
Hence, 23 is the best choice for the scale of ũp.
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Figure 6.19 Proportional, integral, and derivative terms during a 0 A → 5 A → 0 A
step-up/step-down load transient.
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The upper bound of ũp is simply

	ũp
 = K̃p	ẽ
 = 16810, (6.92)

as also highlighted in Fig. 6.19. It can be verified that such estimate coincides with
the L1-norm of ũ. In fact, for a proportional relationship, the L1 upper bound always
coincides with the true peak value of the signal.

The required dynamic range and word length for hosting ũp in a B2C word are

DRhw
[
ũp

]n

3 = 20 log10
16810

23 ≈ 26.44 dB

⇒ n = 1 + ceil

(
DRhw

[
ũp

]n

3

20 log10 2

)
= 6. (6.93)

From the above-mentioned derivation, ũp can be stored in a 6-bit-long B2C
word and represented over a scale equal to 23,

[
ũp

]6
3 ⇐

[
K̃p

]3

3
× [ẽ]90 , (6.94)

where a saturated multiplication is employed.
Consider next the derivative term

ũd[k] = K̃d (ẽ[k] − ẽ[k − 1]) . (6.95)

Once again, ũd is always an integer multiple of K̃d = 19210, which from (6.57) is
exactly represented over a scale of 26,

�ũd� = K̃d =
[
K̃d

]3

6︸ ︷︷ ︸
0112

×26. (6.96)

As for ũd’s upper bound, from Fig. 6.19, one has

	ũd
 = 57610. (6.97)

On the other hand, the L1-norm upper bound predicted by (6.81) is

	ũd
 = 2K̃dẽmax = 268810, (6.98)

much larger than the simulated value, the reason being the worst-case nature of the
L1-norm criterion. Nonetheless, the word length of ũd is calculated according to the
latter estimate of 	ũd
.
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Proceeding as done with the proportional term, the hardware dynamic range
and the word length required to host ũd are

DRhw [ũd]
n
6 = 20 log10

268810

26 ≈ 32.5 dB

⇒ n = 1 + ceil

(
DRhw [ũd]

n
6

20 log10 2

)
= 7.

(6.99)

According to the foregoing arguments, ũd can be stored as a 7-bit-long B2C word
with a scale equal to 26,

[ũd]
7
6 ⇐

[
K̃d

]3

6
× [ẽ]90 . (6.100)

Finally, examine the integral term ũi. In every instant in time, the integrator
output is always a multiple of K̃i = 0.62510, as already discussed in Section 5.3.2 in
the context of the role the integral gain may have in triggering limit cycle oscillations.
Therefore,

�ũi� = K̃i =
[
K̃i

]4

−3︸ ︷︷ ︸
01012

×2−3, (6.101)

and ũi is represented on the same scale as K̃i, that is, 2−3.
As ũi is a biased signal, its upper bound is determined according to criterion

(6.84),

	ũi
 = Nr − 1 = 102310. (6.102)

Proceeding as before for the word length determination, we obtain

DRhw [ũi]
n
−3 = 20 log10

102310

2−3 ≈ 78.26 dB

⇒ n = 1 + ceil

(
DRhw [ũi]

n
−3

20 log10 2

)
= 14. (6.103)

The integral term can therefore be hosted in a 14-bit B2C word with a scale equal
to 2−3. Observe that the integral term requires the largest hardware dynamic range
among the three control terms. In fact, ũi must simultaneously fine-tune the control
command and cover the entire operating range of the digital pulse width modulator.

The word length of w̃i = K̃iẽ can be determined as done for the proportional
term. Its upper bound is

	w̃i
 = K̃iẽmax = 4.37510, (6.104)
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and therefore

DRhw [w̃i]
n
−3 = 20 log10

	w̃i

2−3 ≈ 30.9 dB

⇒ n = 1 + ceil

(
DRhw [w̃i]

n
−3

20 log10 2

)
= 7. (6.105)

Signal w̃i is then obtained from ẽ via a saturated multiplication

[w̃i]
7
−3 ⇐

[
K̃i

]4

−3
× [ẽ]90 . (6.106)

The overall high-resolution PID control signal ũPID is

ũPID = ũp + ũi + ũd. (6.107)

In the B2C implementation, the above-mentioned addition requires a preliminary
alignment of both ũp and ũd to ũi,

[
ũp

]12
−3 ←

[
ũp

]6
3 ,

[ũd]
16
−3 ← [ũd]

7
6 ,

(6.108)

[ũPID ]14
−3 ⇐

[
ũp

]12
−3 + [ũi]

14
−3 + [ũd]

16
−3 . (6.109)

The last step is the quantization/saturation of ũPID necessary to have the com-
pensator output ũ matching the DPWM word length and resolution. Following the
block diagram shown in Fig. 6.5, ũPID is first truncated into the intermediate signal
ũx,

[ũx]11
0 ← [ũPID ]14

−3 , (6.110)

and the result is then limited between 0 and Nr − 1 = 102310,

[ũ]11
0 ←

⎧⎨
⎩

102310 if [ũx]11
0 > 102310,

0 if [ũx]11
0 < 0,

[ũx]11
0 otherwise.

(6.111)

Notice that, in practice, comparison against 102310 is unnecessary, as [ũx]110 is an
11-bit B2C word.

Figure 6.20 illustrates the block diagram of the fixed-point implementation of
the parallel structure determined earlier.
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Figure 6.20 Fixed-point implementation of the parallel structure of the PID compensator.
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Figure 6.21 Direct implementation: signal w̃[k] during a 0 A → 5 A → 0 A
step-up/step-down load transient.

6.5.2 Direct Realization

Consider now the direct realization of the PID compensator illustrated in Fig. 6.15.
In this structure, signal w̃ is the accumulation of all the past error samples,

w̃[k] = w̃[k − 1] + ẽ[k], (6.112)

whereas w̃1 and w̃2 are one-step and two-step delayed versions of w̃, respectively. As
for signals p̃0, p̃1, and p̃2, they are, respectively, proportional to w̃, w̃1, and w̃2. Note
that all the signals in the realization are biased.

Signal w̃ inherits the granularity qẽ = 1 of ẽ and can therefore be represented
on the same scale 20 as ẽ,

�w̃� = �ẽ� = 110. (6.113)

As for the upper bound of w̃, its steady-state value is related to the compensator output
command ũ by

W̃ =
Ũ

b̃0 + b̃1 + b̃2

. (6.114)

Upper bound of w̃ is, following (6.84),

	w̃
 =
Nr − 1

b̃0 + b̃1 + b̃2

≈ 163710, (6.115)

The hardware dynamic range and the word length required for w̃ are

DRhw [w̃]n0 = 20 log10
	w̃

20 ≈ 64.3 dB

⇒ n = 1 + ceil

(
DRhw [w̃]n0
20 log10 2

)
= 12, (6.116)

which also represents the required word length for w̃acc .
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Examine next the signals

p̃0[k] = b̃0w̃[k],

p̃1[k] = b̃1w̃1[k],

p̃2[k] = b̃2w̃2[k],

(6.117)

whose simulated waveforms are shown in Fig. 6.22. Given the unity granularity of
w̃, the scales of p̃0, p̃1, and p̃2 are given by the scales of b̃0, b̃1, and b̃2, respectively,

�p̃0� = b̃0 =
[
b̃0

]12

−3︸ ︷︷ ︸
0110101111112

×2−3,

�p̃1� = b̃1 =
[
b̃1

]12

−2︸ ︷︷ ︸
1001101010012

×2−2,

�p̃2� = b̃2 =
[
b̃2

]10

−1︸ ︷︷ ︸
01011111012

×2−1,

(6.118)
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Figure 6.22 Direct implementation: signals p̃0[k], p̃1[k], and p̃2[k] during a
0 A → 5 A → 0 A step-up/step-down load transient.
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as per (6.64). Estimation of upper bounds for p̃0, p̃1, and p̃2 is accomplished by scaling
the upper bound of w̃ by b̃0, b̃1, and b̃2, respectively,

	p̃0
 = 	w̃
b̃0 =
b̃0 (Nr − 1)
b̃0 + b̃1 + b̃2

= 353344.210,

	p̃1
 = 	w̃
b̃1 =
b̃1 (Nr − 1)
b̃0 + b̃1 + b̃2

= 664131.610,

	p̃2
 = 	w̃
b̃2 =
b̃2 (Nr − 1)
b̃0 + b̃1 + b̃2

= 311810.410.

(6.119)

According to the foregoing calculations, dynamic ranges and the required word
lengths for p̃0, p̃1, and p̃2 are

DRhw [p̃0]
n
−3 � 20 log10

	p̃0

2−3 ≈ 129 dB ⇒ n = 1 + ceil

(
DRhw [p̃0]

n
−3

20 log10 2

)
= 23,

DRhw [p̃1]
n
−2 � 20 log10

	p̃1

2−2 ≈ 128 dB ⇒ n = 1 + ceil

(
DRhw [p̃1]

n
−2

20 log10 2

)
= 23,

DRhw [p̃2]
n
−1 � 20 log10

	p̃2

2−1 ≈ 116 dB ⇒ n = 1 + ceil

(
DRhw [p̃2]

n
−1

20 log10 2

)
= 21.

(6.120)
The high-resolution PID command ũPID can be evaluated as a saturated sum

of p̃0, p̃1, and p̃2. Before the summation, an alignment of p̃1 and p̃2 to p̃0 is necessary,

[p̃1]
24
−3 ← [p̃1]

23
−2 ,

[p̃2]
23
−3 ← [p̃2]

21
−1 ,

(6.121)

[ũPID ]14
−3 ⇐ [p̃0]

23
−3 + [p̃1]

24
−3 + [p̃2]

23
−3 . (6.122)

Finally, as with the parallel implementation, the output control command ũ is
a truncated and limited version of ũPID ,

[ũx]11
0 ← [ũPID ]14

−3 , (6.123)

[ũ]11
0 ←

{
0 if [ũx]110 < 0,

[ũx]11
0 otherwise.

(6.124)

Figure 6.23 illustrates the fixed-point implementation of the direct structure
discussed in this section.
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[ṽs]
9
0

−

+

LSB

Align

LSB

Align

+ + +

+

×

×

×

z−1

z−1

Figure 6.23 Fixed-point implementation of the direct structure.
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6.5.3 Cascade Realization

In the cascade realization—Fig. 6.16—the first step toward word length determina-
tion is the dynamic range analysis of the three signals w̃i, w̃1, and w̃2. Their transient
responses during the 0 A→ 5 A→ 0 A sequence taken as the worst case are illustrated
in Fig. 6.24.

Signal w̃i is obtained by integration of ẽ[k] exactly as signal w̃ of the direct
structure. Hence,

�w̃i� = �ẽ� = 1. (6.125)

Furthermore, w̃i is a biased signal whose steady-state value is

W̃i =
Ũ

K̃
(
1 + c̃z1

) (
1 + c̃z2

) . (6.126)

As shown in Fig. 6.24, dynamics of w̃i are sufficiently slow and essentially
overshoot-free. It follows that one can safely take (6.84) as the design criterion and
define

	w̃i
 =
Nr − 1

K̃
(
1 + c̃z1

) (
1 + c̃z2

) ≈ 161710 (6.127)

as the signal’s upper bound. It follows that

DRhw [w̃i]
n
0 � 20 log10

	w̃i

20 ≈ 64.2 dB ⇒ n = 1 + ceil

(
DRhw [w̃1]

n
−5

20 log10 2

)
= 12.

(6.128)
Examine now signals w̃1 and w̃2. Their lower bounds are

�w̃1� =
(
1 + c̃z1

)
�w̃i� = 0.0312510 = 012 × 2−5 (6.129)

and

�w̃2� =
(
1 + c̃z2

)
�w̃1�

=
(
1 + c̃z2

) (
1 + c̃z1

)
�w̃i�

= 0.002929687510

= 0112 × 2−10. (6.130)

Therefore, these signals can be exactly represented over a scale of 2−5 and 2−10,
respectively. As for their upper bounds, w̃1 and w̃2 are biased signals as well. Assess
their steady-state range of operation first. As for w̃1,

0 ≤ W̃1 ≤
Nr − 1

K̃
(
1 + c̃z2

) ≈ 50.2, (6.131)
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Figure 6.24 Cascade implementation: signals w̃1[k], w̃2[k], and w̃3[k] during a 0 A → 5 A
→ 0 A step-up/step-down load transient.

whereas for w̃2

0 ≤ W̃2 ≤
Nr − 1

K̃
≈ 4.74. (6.132)

Both of the above-mentioned inequalities express steady-state boundaries and do not
hold, in principle, during transient events. Indeed, from Fig. 6.24, it is possible to see
that the large overshoots occurring during the transient are likely to drive these signals
into saturation if no dynamic overhead is included. In the first-cut design presented
here, steady-state upper bounds are extended by a factor of two,

	w̃1
 ≈ 10110,

	w̃2
 ≈ 9.4710.
(6.133)

It follows that

DRhw [w̃1]
n
−5 � 20 log10

	w̃1

2−5 ≈ 70.2 dB ⇒ n = 1 + ceil

(
DRhw [w̃2]

n
−5

20 log10 2

)
= 13

DRhw [w̃2]
n
−10 � 20 log10

	w̃2

2−10 ≈ 79.7 dB ⇒ n = 1 + ceil

(
DRhw [w̃3]

n
−10

20 log10 2

)
= 15.

(6.134)
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High-resolution control signal ũPID is equal to w̃2 multiplied by K̃. The
required scale and the upper bound for ũPID are then straightforwardly determined,

�ũPID� = K̃�w̃2� = 0.632812510 = 010100012 × 2−7,

	ũPID
 = K̃	w̃2
 ≈ 107010.
(6.135)

It follows that

DRhw [ũPID ]n−7 = 20 log10
	ũPID


2−7 ≈ 102.7 dB

⇒ n = 1 + ceil

(
DRhw [ũPID ]n−7

20 log10 2

)
= 19. (6.136)

The compensator output ũ is obtained, as in the parallel structure, by truncation
and saturation,

[ũx]12
0 ← [ũPID ]19

−7 , (6.137)

[ũ]11
0 ←

⎧⎨
⎩

102310 if [ũx]12
0 > 102310,

0 if [ũx]12
0 < 0,

[ũx]12
0 otherwise.

(6.138)

Note that, in this case, saturation against 102310 must be explicitly implemented.
The above-mentioned analysis is not complete yet though, as one still needs to

determine the word lengths of the partial products

p̃1 � w̃i[k − 1]c̃z1
(6.139)

and
p̃2 � w̃1[k − 1]c̃z2

. (6.140)

Application of the above-mentioned procedure yields

[p̃1]
17
−5 (6.141)

and
[p̃2]

18
−10 . (6.142)

The complete fixed-point realization of the cascade structure is illustrated in
Fig. 6.25.
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Figure 6.25 Fixed-point implementation of the cascade structure.
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6.5.4 Linear versus Quantized System Response

As a conclusion of this section dedicated to fixed-point implementation examples, it is
instructive to compare the actual closed-loop response of the system—including coef-
ficient quantization effects and fixed-point arithmetic—against the “unquantized”
response designed based on linearized small-signal models.

Figure 6.26 reports the 0 to 5 A step-load transients of the output voltage, induc-
tor current, and digital control command. Two simulations are carried out to generate
this plot:

• In the “unquantized” case, no A/D nor DPWM quantizations are performed.
Furthermore, control calculations are executed using the full Matlab® double
precision floating-point arithmetic.

• The second simulation, on the other hand, accounts for A/D and DPWM finite
resolutions, and PID calculations are executed in fixed-point precision.

The simulated PID structure is, in both cases, the parallel realization.
The comparison highlights a number of features that are commonly observed in

an actual digital control system. First, observe that steady-state output voltage wave-
forms before the transient are slightly different, that is, the two systems regulate at
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Figure 6.26 Comparison between linear and quantized closed-loop response to a
0 A → 5 A step load.
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different steady-state operating points. Once A/D quantization is considered, in fact,
the digital controller can only regulate the sampled waveform to within the A/D quan-
tization bin. To better visualize this effect, A/D quantization levels are superimposed
to the voltage waveforms. Notice that the steady-state error between the linear and
quantized controllers lies within the zero-error bin.

Consider next the dynamics of the transient. Over the timescale of the
transient—approximately 100 μs—the two responses essentially achieve the
same performance, meaning that quantization effects do not disrupt the designed
closed-loop dynamics. This has been the main objective of this chapter—to design
quantizations so that they have limited impact on the system behavior. Differences
in the two responses are nonetheless visible as the voltage waveform crosses the
various A/D levels. One can verify that the large, impulsive control command
variations occurring at every A/D level crossing is essentially due to the derivative
action.

6.6 HDL IMPLEMENTATION OF THE CONTROLLER

Considering again the synchronous Buck converter case study, the complete HDL
coding of the PID compensator is presented in this section. In particular, the parallel
PID structure is exemplified in both VHDL and Verilog languages [171–179].

In HDL-coding the PID structure, it is of utmost importance to separate the
combinational portion of the controller from the sequential portion. While the for-
mer groups all the arithmetic, logic, and bitwise manipulations required for control
operation, the latter serves the purpose of updating the compensator state variables in
a clocked manner. For instance, Fig. 6.27 sketches the subdivision of the parallel PID
structure into its combinational part, which calculates ũ[k] from the input ẽ[k] and
states ẽ[k − 1] and ũi[k − 1], and the sequential part that updates the state vector on
a sampling cycle basis. Such separation between combinational and sequential por-
tion is the first step toward the generation of robust, portable, and, most importantly,
synthesizable HDL code.

ẽ[k] ũ[k]

ẽ[k] and ũi[k]

ẽ[k − 1] and ũi[k − 1] Sequential Logic

Combinational Logic

clk

Calculate
ũ[k]

Update
ẽ[k − 1] and ũi[k − 1]

Figure 6.27 Separation between combinational and sequential portions of the controller.
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6.6.1 VHDL Example

In the following example, a digital signal clk acts as a clock for the positive
edge-triggered PID state machine. The digitized error signal, represented by a B2C
word [ẽ]90, is VHDL coded as a 9-bit signed input signal named e. Similarly, the
overall PID control command [ũ]11

0 is represented by an 11-bit signed output signal
u. VHDL signals Kp, Ki, and Kd represent the proportional, integral, and derivative
gains, respectively.

Saturated arithmetic is systematically employed, assuming the presence, in
the design, of the two entities saturated_adder and saturated_multiplier
defined in Inset B.12 of Appendix B. Observe that, although the implementation—or
architecture, to employ VHDL terminology—of such arithmetic blocks may differ
from what is exemplified in Inset B.12, it is implicit that these blocks remain purely
combinational.

Entity and architecture declarations for the parallel PID realization are as
follows:

1 library IEEE;
2 use IEEE.STD_LOGIC_1164.ALL;
3 use IEEE.NUMERIC_STD.ALL;
4
5 entity PID is
6
7 port (
8 clk : in std_logic;
9

10 Kp : in signed(2 downto 0); -- [3,3]
11 Ki : in signed(3 downto 0); -- [4,-3]
12 Kd : in signed(2 downto 0); -- [3,6]
13
14 e : in signed(8 downto 0); -- [9,0]
15 u : out signed(10 downto 0) -- [11,0]
16 );
17
18 end PID;
19
20 architecture PID_parallel of PID is
21
22 component saturated_adder is
23 generic (
24 n, p, m : integer -- m <= max(n,p)+1
25 );
26
27 port (
28 x : in signed(n-1 downto 0);
29 y : in signed(p-1 downto 0);
30 z : out signed(m-1 downto 0);
31 OV : out std_logic;
32 op : in std_logic
33 );
34 end component;
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35
36 component saturated_multiplier is
37 generic (
38 n, p, m : integer -- m<=n+p
39 );
40
41 port (
42 x : in signed(n-1 downto 0);
43 y : in signed(p-1 downto 0);
44 z : out signed(m-1 downto 0);
45 OV : out std_logic
46 );
47 end component;
48
49 signal e1 : signed(8 downto 0); -- [9,0]
50
51 signal up : signed(5 downto 0); -- [6,3]
52
53 signal ui, ui1 : signed(13 downto 0); -- [14,-3]
54 signal wi : signed(6 downto 0); -- [7,-3]
55
56 signal ud : signed(6 downto 0); -- [7,6]
57 signal wd : signed(8 downto 0); -- [9,0]
58
59 signal upd : signed(16 downto 0); -- [17,-3]
60 signal upid : signed(13 downto 0); -- [14,-3]
61 signal ux : signed(10 downto 0); -- [11,0]
62
63 begin
64
65 -- *************************************************
66 -- Combinational part
67 -- *************************************************
68 Kp_mult : saturated_multiplier
69 generic map (n=>9, p=>3, m=>6)
70 port map (x=>e, y=>Kp, z=>up, OV=>open);
71
72 Ki_mult : saturated_multiplier
73 generic map (n=>9, p=>4, m=>7)
74 port map (x=>e, y=>Ki, z=>wi, OV=>open);
75
76 Ki_add : saturated_adder
77 generic map (n=>14, p=>7, m=>14)
78 port map (x=>ui1, y=> wi, z=> ui, OV=>open, op=>'1');
79
80 Kd_sub : saturated_adder
81 generic map (n=>9, p=>9, m=>9)
82 port map (x=>e, y=>e1, z=>wd, OV=>open, op=>'0');
83
84 Kd_mult : saturated_multiplier
85 generic map (n=>9, p=>3, m=>7)
86 port map (x=>wd, y=>Kd, z=>ud, OV=>open);
87
88 upd_add : saturated_adder
89 generic map (n=>12, p=>16, m=>17)
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90 port map (x=>(up&"000000"), y=>(ud&"000000000"),
91 z=> upd, OV=>open, op=>'1');
92
93 upid_add : saturated_adder
94 generic map (n=>14, p=>17, m=>14)
95 port map (x=>ui, y=>upd, z=>upid, OV=>open, op=>'1');
96
97 ux <= upid(13 downto 3);
98 u <= (others=>'0') when ux(10)='1' else ux;
99

100 -- *************************************************
101 -- Sequential part
102 -- *************************************************
103 pid_proc : process(clk)
104 begin
105 if (clk'event AND clk='1') then
106 ui1 <= ui;
107 e1 <= e;
108 end if;
109 end process;
110
111 end PID_parallel;

The above-mentioned architecture definition closely follows the implementation-level
block diagram of Fig. 6.20. All arithmetic operations implementing control cal-
culations pertain to the combinational part of the PID machine, and so does the
quantization/saturation step implemented in lines 97 and 98. It is to be noted
that explicit checking for [ũx]11

0 > 102310 is, as anticipated, unnecessary, as it
is automatically ensured by the saturated addition used for computing [ũPID ]13−3,
followed by the [ũx]11

0 ← [ũPID ]13
−3 truncation. Hence, only the check for [ũx]110 < 0

is implemented in line 98 by examination of the sign bit of ux.
As for the sequential part of the PID, it is implemented in line 103 as a process

statement labeled pid_proc, clocked by clk, which updates registers ui1 and e1
representing signals ẽ[k − 1] and ũi[k − 1].

6.6.2 Verilog Example

A Verilog version of the PID module discussed earlier is given by the following
code:

1 module PID(clk,Kp,Ki,Kd,e,u);
2
3 input clk;
4
5 input signed [2:0] Kp; // [3,3]
6 input signed [3:0] Ki; // [4,-3]
7 input signed [2:0] Kd; // [3,6]
8
9 input signed [8:0] e; // [9,0]
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10 output signed [10:0] u; // [11,0]
11
12 reg signed [8:0] e1; // [9,0]
13
14 wire signed [5:0] up; // [6,3]
15
16 wire signed [13:0] ui; // [14,-3]
17 reg signed [13:0] ui1; // [14,-3]
18 wire signed [6:0] wi; // [7,-3]
19
20 wire signed [6:0] ud; // [7,6]
21 wire signed [8:0] wd; // [9,0]
22
23 wire signed [16:0] upd; // [17,-3]
24 wire signed [13:0] upid; // [14,-3]
25 wire signed [10:0] ux; // [11,0]
26
27 // ****************************************
28 // Combinational part
29 // ****************************************
30 saturated_multiplier Kp_mult (e,Kp,up,,);
31 defparam Kp_mult.n=9, Kp_mult.p=3, Kp_mult.m=6;
32
33 saturated_multiplier Ki_mult (e,Ki,wi,,);
34 defparam Ki_mult.n=9, Ki_mult.p=4, Ki_mult.m=7;
35
36 saturated_adder Ki_add (ui1,wi,ui,,1'b1);
37 defparam Ki_add.n=14, Ki_add.p=7, Ki_add.m=14;
38
39 saturated_adder Kd_sub (e,e1,wd,,1'b0);
40 defparam Kd_sub.n=9, Kd_sub.p=9, Kd_sub.m=9;
41
42 saturated_multiplier Kd_mult (wd,Kd,ud,,);
43 defparam Kd_mult.n=9, Kd_mult.p=3, Kd_mult.m=7;
44
45 saturated_adder upd_add ({up,6'b0},{ud,9'b0},upd,1'b1);
46 defparam upd_add.n=12, upd_add.p=16, upd_add.m=17;
47
48 saturated_adder upid_add (upd,ui,upid,,1'b1);
49 defparam upid_add.n=17, upid_add.p=14, upid_add.m=14;
50
51 assign ux = upid[13:3];
52 assign u = (ux[10]==1'b1) ? 11'b0 : ux;
53
54 // ****************************************
55 // Sequential part
56 // ****************************************
57 always @(posedge clk)
58 begin
59 ui1 <= ui;
60 e1 <= e;
61 end
62
63 endmodule
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As in the VHDL example, the module makes use of two saturated arithmetic
blocks, namely saturated_adder and saturated_multiplier, which have
been reported in Inset B.13. The module is clearly separated into its combinational
and sequential part, the latter coded in line 57 as a positive edge-triggered always
statement.

6.7 SUMMARY OF KEY POINTS

• The implementation step consists of (i) scaling and quantization of the com-
pensator coefficients and (ii) realization of the control law in a finite-precision
fixed-point arithmetic environment. Both steps irreversibly alter the ideally
designed loop gain, and selection of the quantization resolution must be
performed with the objective of constraining the error to a negligible amount.

• The implementation step is closely related to the controller structure. In this
chapter, three PID realizations are considered, namely the parallel, the direct,
and the cascade structures.

• Quantization of the compensator coefficient must be guided by the compensator
relative sensitivity function. This quantity can be related to the relative error on
the system loop gain. Typical constraints concern the loop gain error at the
desired crossover frequency, as well as loop gain errors in the low-frequency
region. Once appropriate constraints to the compensator sensitivity function are
set, the required resolution for the compensator coefficients can be determined.

• Implementation of the control law in a fixed-point arithmetic environment
consists in determining the resolution and the scale of every binary quantity
in the controller structure. To this end, the main tool is represented by the
dynamic range of each signal. The hardware dynamic range—that is, the
required wordlength—should be large enough to (i) host the entire signal
excursion without saturations and (ii) represent each signal with a sufficiently
fine resolution not to trigger quantization-related effects. In assessing these
limits, an estimation of the severity of the transients the controller is expected
to handle is of great importance.





C H A P T E R 7
DIGITAL AUTOTUNING

In the standard design flow, a control loop is designed based on power converter
models assuming known system and controller parameters. With this approach, the
closed-loop performance is necessarily sensitive to variations in system dynamics due
to changes in operating conditions, as well as tolerances and drifts in parameter val-
ues. Furthermore, the converter parasitics are notoriously difficult to model, and an
accurate load model may not be available at all at the time the control loop is designed.
With analog compensators, usually implemented using op-amp circuits with fixed
on-chip or off-chip RC networks, a worst-case approach is usually adopted, and the
resulting control loop is rarely optimal for the particular application, with no possibil-
ity of adaptation to specific operating conditions. A robust design capable of handling
wide variations in dynamics is overly conservative over most of the expected range,
resulting in degraded performance. Furthermore, the design flow must be reiterated
for each new application.

With the much increased flexibility and programmability of digital controllers,
opportunities are open to incorporate intelligent control algorithms to improve
dynamic responses and robustness over a wider range of possible operating points
and over wider ranges of system parameters. Digital autotuning, that is, the ability
to automatically tune the controller parameters in response to the actual system
dynamics, represents a significant departure from the conventional design flow. A
digital controller ideally becomes a “plug and play” unit capable of identifying
the key characteristics of the power converter and the load and of self-calibrating
accordingly in order to meet predefined or user-defined design constraints. In
addition to one-time tuning controllers, adaptive tuning techniques are capable of
maintaining the control loop performance over time by adjusting the compensation
to variations in system parameters. Furthermore, the capability of a single controller
integrated circuit to handle a variety of converter parameters or even different
converter topologies can enhance versatility and greatly simplify the design process,
eliminating the need for differentiated production lines. Numerous advances
have been made in the area of practical autotuning digital control algorithms and
implementation techniques [81–101], and the area is subject to ongoing research
and development efforts.

In this chapter, after a brief introduction to digital autotuning in Section 7.1 and
a summary of programmable PID structures in Section 7.2, two autotuning techniques
are presented in more detail: an injection-based approach in Section 7.3 and a relay
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feedback-based approach in Section 7.4. Practical implementation issues are briefly
reviewed in Section 7.5. Key points are summarized in Section 7.6.

7.1 INTRODUCTION TO DIGITAL AUTOTUNING

The term “autotuning” can refer to different specific functions:

• One-step tuning, which has the goal of calibrating the control system from an
initially “safe” condition, which guarantees stability but does not guarantee the
necessary dynamic performances. The tuning step can be performed only once
or at specific points, for example, upon system turn-on.

• Performance tracking, in which an autotuning step is repeated in time in order
to keep track of the process parametric variations due to changes in operating
conditions or drifts in component parameters.

• Adaptive tuning, in which autotuning is performed continuously throughout the
system operation.

A number of autotuning techniques proposed in the literature adopt a phi-
losophy similar to the well-known techniques of manual PID tuning, such as the
Ziegler–Nichols methods. These techniques are based on field measurements of the
plant. A limited number, for example, two or three, of key plant parameters are first
identified from measurements and are subsequently employed for calibrating the con-
troller gains according to predefined tuning formulas. If an increase in complexity can
be tolerated, a more extensive nonparametric identification of the converter frequency
response can performed by embedding frequency analysis capabilities into the digital
controller [79, 80, 180–184]. Once the converter frequency response is determined,
automatic PID tuning can be accomplished against any design constraints formulated
in the frequency domain (such as crossover frequency, phase and gain margin etc.)
[96].

Regardless of the specific approach, identification and tuning are the two basic
operations performed by any digital autotuner. The identification/tuning steps can be
either performed as two distinct phases of the tuning process or, in other cases, nested
into a main tuning loop that operates so as to iteratively minimize a given tuning error,
the definition of which depends on the autotuner implementation.

The identification step invariably involves perturbing the power converter oper-
ation around its steady-state operating point. During the tuning step, the operating
point is usually maintained, either in open-loop or in closed-loop using a “safe,”
low-bandwidth controller. In the techniques discussed in this chapter, the converter
is feedback-controlled at all times. A major advantage of such closed-loop autotun-
ing is that regulation of the output voltage is not affected by the tuning process. On
the other hand, precautions must be taken not to perturb the system heavily, so as to
compromise regulation accuracy or load operation.

Two main approaches to perturbing the power converter have been explored in
the literature of closed-loop autotuning:

• Limit cycling, which has in Chapter 5 been discussed as a generally undesir-
able steady-state disturbance, can be purposely induced as a way to create
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a small-signal perturbation around the converter operating point [81, 83,
84, 86–90]. Frequency and amplitude of the limit cycle can carry relevant
information for identification purposes. The limit cycle is typically induced by
purposely inserting a strong nonlinearity in the digital loop. Relay feedback
autotuners discussed in Section 7.4 are a class of approaches following this
philosophy.

• A digital perturbation can be explicitly generated by the autotuning system and
superimposed to the control command [81, 91–93, 95–97, 101]. As frequency,
amplitude, and waveshape of the digital perturbation are under the autotuner’s
control, this method is overall more reliable and offers a wider set of possi-
bilities with respect to the limit cycle-based approach. On the other hand, a
more complex implementation is usually required. One of these techniques is
discussed in Section 7.3.

Tuning invariably relies on a programmable compensator structure allowing
for on-the-fly adjustments of the compensator parameters—PID gains in the case of
a PID compensator. A brief overview of programmable PID structures is provided in
Section 7.2.

7.2 PROGRAMMABLE PID STRUCTURES

Programmable versions of the basic PID structures examined in the previous chapters
can easily be obtained by replacing the constant gain blocks with full digital multipli-
ers. The realizations most commonly employed for digital autotuning are the parallel
structure and the cascade structure described in detail in Chapter 6. In these struc-
tures, adjustments of the PID gains have clear and easily understandable effects on
the PID frequency response. The direct realization, on the contrary, is less attractive
for digital autotuning because a modification of either of the coefficients b0, b1, or b2
affects the PID gains and zeros in a complex manner.

Figure 7.1 illustrates a programmable version of the parallel PID realization.
The low-frequency, mid-frequency, and high-frequency portions of the PID response
can be accessed by acting on Ki, Kp, and Kd, respectively. For example, Fig. 7.2
exemplifies the change in frequency response that a digital PID undergoes when the
proportional gain Ǩp is adjusted from 50% to 200% of a nominal value. Changes
in Ǩp mostly affect the mid-frequency magnitude response. The phase response is
strongly affected by Ǩp due to the induced change in the PID zeros locations. The
effect of a change in the derivative gain on the same PID frequency response is
illustrated in Fig. 7.3. The magnitude response at high frequencies changes propor-
tionally to Ǩd. Observe, however, that the phase response is affected as well in the
high-frequency range. This observation leads to a general conclusion that affect-
ing one of the PID parameters impacts both magnitude and phase response of the
compensator. The designer of an autotuning system must therefore be aware of the
interacting nature of the parameters of any PID realization.

The cascade structure is useful when the autotuner requires direct access to
the compensator zeros and to the overall gain. In the cascade form seen in Chapter 6,
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Figure 7.1 (top) Programmable PID in parallel form and (bottom) block diagram symbol.
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Ǩp

Figure 7.2 Bode plots of a PID transfer function under a change in the proportional gain.



7.2 PROGRAMMABLE PID STRUCTURES 245

100 1k 10k 100k 500k
20

30

40

50

60

Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

100 1k 10k 100k 500k
−90

−45

0

45

90

Frequency (Hz)

P
ha

se
 (
°)
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Figure 7.3 Bode plots of a PID transfer function under a change in the derivative gain.

however, acting on cz1
or cz2

has the side effect of affecting the low-frequency portion
of the PID frequency response as well. Given the PID transfer function in the cascaded
form,

GPID(z; c) = K

(
1 + cz1

z−1
) (

1 + cz2
z−1

)
1 − z−1 , (7.1)

the low-frequency asymptotic form becomes

GPID(z; c)
low freq.
≈ K

(
1 + cz1

) (
1 + cz2

)
1 − z−1 . (7.2)

It can be seen that modifications in cz1
or cz2

affect the low-frequency asymptote. This
is generally undesirable, as it may impact the closed-loop stability during the tuning
process that performs adjustments in cz1

and cz2
. One way to avoid this interaction is

to use an alternative realization of the cascade structure,

GPID(z;κ) � Ki

1 − z−1

(
1 − κ1 + κ1z

−1) (
1 − κ2 + κ2z

−1), κ � [Ki, κ1, κ2]
T,

(7.3)
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GPID(z; κ)
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Figure 7.4 (top) Programmable PID in the cascade form and (bottom) block diagram
symbol.

which leads to the following low-frequency asymptotic form:

GPID(z;κ)
low freq.
≈ Ki

1 − z−1 . (7.4)

In this form, the overall gain and the integral gain coincide, while the PID zeros in
the z-plane are located at

z1,2 = −
κ1,2

1 − κ1,2
. (7.5)

This programmable cascade structure is depicted in Fig. 7.4.
Another useful programmable structure is illustrated in Fig. 7.5, a hybrid real-

ization where the integral term acts in parallel to the proportional-derivative action,
which is in turn implemented in a cascade form,

GPID(z;h) � Ki

1 − z−1 + KPD
(
1 − κ + κz−1), h � [Ki,KPD , κ]T. (7.6)

This structure is easily reduced to a parallel PI architecture by imposing κ = 0 or to
a full PID form with direct access to the overall PD gain KPD and zero location.

Programmability inevitably entails an increase in hardware complexity of the
digital compensator. While multiplication by a constant is highly optimized by HDL
synthesis tools and hardwired as a combination of binary shifts and additions, the
complexity of a programmable structure depends on the number of bits required by
the true digital multipliers. This, in turn, is related to how robust the autotuning system
must be and, therefore, how wide the set of representable PID transfer functions needs
to be.
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Programmable PID in
hybrid form and (bottom)
block diagram symbol.

7.3 AUTOTUNING VIA INJECTION OF A DIGITAL
PERTURBATION

A general block diagram of an injection-based autotuning approach is illustrated in
Fig. 7.6. The autotuning system injects a digital perturbation signal upert [k] into the

uy[k]

e[k]
GPID(z; K)

KiKp Kd

+
ux[k]

+
−

vo[k]

Vref

Digital
autotuner

Kp[n]

Ki[n]

Kd[n]

upert [k]

Modulator +
power converter

Figure 7.6 A block diagram of an autotuning approach based on injection of a digital
perturbation.
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feedback loop, superimposed to the PID output uy[k]. The overall control command
that modulates the converter is therefore

ux[k] � uy[k] + upert [k]. (7.7)

Simultaneously, signals uy[k] and ux[k] before and after the injection point are
monitored. One may note that the injection of upert [k] and monitoring of uy[k]
and ux[k] resembles the injection performed in the Middlebrook’s loop gain
measurement approach [78], where the system loop gain is found by evaluating
the magnitude and phase relationships between uy[k] and ux[k] at the injection
frequency.

The tuning process adjusts the compensator gains until the correct amplitude
and phase relationships are established between the ac components of ux[k] and
uy[k]. As these depend on the system loop gain at the injection frequency, this method
can be used to tune for a predefined bandwidth ωc and phase margin ϕm. If the system
loop gain is T (z), the tuning target can be expressed as

T (ejωcTs) = −ejϕm . (7.8)

The complex constraint (7.8) translates into two real constraints on the PID
compensator. Therefore, the basic version of the injection-based approach performs
a two-parameters tuning, that is, it is only capable of determining two out of the three
PID parameters, whereas the remaining one must be kept fixed during the tuning
process. This identifies two versions of the approach:

• PD tuning. In this scenario, which is the one considered in more detail in the
remaining part of this section, an integral gain Ki is set to a safe value and kept
fixed during the tuning process. The autotuner determines the proportional and
the derivative gains Kp and Kd in order to force the desired crossover frequency
and phase margin.

• PI tuning. This scenario assumes that a PI compensation is sufficient in order
to safely control the converter. The autotuner determines the integral and the
proportional gains Ki and Kp in order to force the desired crossover frequency
and phase margin, while the derivative gain is set to Kd = 0.

In addition to the basic versions outlined earlier, the injection-based approach
can be employed to handle more complex scenarios, such as the following:

• The PD tuning phase can be followed by a subsequent tuning of the integral
gain Ki aimed at improving the low-frequency gain response.

• A PI tuning step can be conditionally executed after a PD tuning in the event
that the PD tuning sets the derivative gain to a very small value (which implies
that no derivative action is actually needed to compensate the system).

In the following, the theory of operation of the injection-based autotuning is
first outlined in its most general formulation, followed by a detailed implementation
of a PD autotuner.
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7.3.1 Theory of Operation

Let upert [k] be a digital sinewave of small amplitude ûm oscillating at frequency ωp,

upert [k] � ûm sin(ωpkTs + ϕp). (7.9)

Assuming that the closed-loop system reacts linearly in response to the small pertur-
bation upert [k], small-signal ac components ûx[k] and ûy[k] arise at the perturbation
frequency ωp on top of ux and uy ,

ux[k] = U + ûx[k] = U + ûx,m sin (ωpkTs + ϕx),

uy[k] = U + ûy[k] = U + ûy,m sin (ωpkTs + ϕy),
(7.10)

where U is the steady-state value of the control command as determined by the unper-
turbed feedback loop.

As the system is excited at a single frequency and responds linearly given the
small-signal assumption, the autotuner’s operation is more conveniently described in
terms of phasor analysis. In the following, �a denotes the phasor corresponding to an
ac oscillation a[k],

a[k] = am sin (ωkTs + ϕa),
↓

�a � amejϕa .
(7.11)

Phasor �a is a complex number representable by a vector in the complex plane.
Small-signal-wise, (7.7) becomes

ûx[k] = ûy[k] + upert [k], (7.12)

and therefore, in phasor notation,

�ux = �uy + �upert
� ûx,mejϕy � ûy,mejϕx � ûmejϕp .

(7.13)

The phasor relationship between �uy and �ux is, then,

�uy

�ux

= −T (ejωpTs) . (7.14)

This relationship is the theoretical foundation of the method. If the PID gains are
adjusted in such a way that (i) phasors �ux and �uy have equal magnitude and (ii) �ux

lags �uy by ϕm degrees, then

�ux = �uye−jϕm . (7.15)
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From (7.14), it follows that

�uy

�ux

= ejϕm = −T (ejωpTs) ⇒ T (ejωpTs) = −ejϕm , (7.16)

which corresponds to (7.8) for ωp = ωc. In other words, condition (7.15) is an equiv-
alent expression of the tuning target.

During the tuning process, on the other hand, (7.15) is not met, and amplitude
and phase errors between ûx[k] and ûy[k] can be processed to decide how to adjust
the PID parameters. In particular:

• The control bandwidth must be increased or decreased depending on whether
|�uy| < |�ux| or |�uy| > |�ux|, respectively.

• The loop gain phase at ωp must be increased or decreased depending on whether
�ux lags �uy by less or more than ϕm degrees.

Given the tuning target (7.15), define the tuning error �ε as the phasor difference
between �ux and the ϕm-delayed version of �uy,

�ε � �ux − �uye−jϕm . (7.17)

As a phasor, the tuning error �ε summarizes the errors in both the phase mar-
gin and the crossover frequency. To better understand how, consider first the phasor
diagram exemplified in Fig. 7.7(a), which corresponds to a generic situation during

ϕm ux

uy

uye−jϕm ε

ux

ϕm

uy

uye−jϕm ε

ϕm

uy

uye−jϕm
ε

ux

ϕm

uy

ux = uye−jϕm

ε = 0

(a)

(b)

(c)

(d)

Figure 7.7 Phasor diagram (a) during the tuning process, (b)
with zero error for the phase margin, (c) with zero error for the
crossover frequency, and (d) after the tuning target has been
reached.
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ux⊥ = − ux

ux

ε

ε

ε⊥

Figure 7.8 Decomposition of the tuning error �ε into a
component �ε‖ parallel to �ux and an orthogonal component �ε⊥.

the tuning process. Assume now that the phase margin error is nulled, resulting in the
phasor diagram of Fig. 7.7(b). The ϕm-delayed phasor �uye−jϕm is now parallel to
�ux but has a different magnitude as a result of the crossover frequency not yet being
equal to ωp. Notice also how �ε is parallel to �ux. Next, Fig. 7.7(c) illustrates the case
when the crossover frequency error is zero, whereas a nonzero phase margin error
still keeps �uye−jϕm misaligned with respect to �ux. The tuning error �ε is essentially
orthogonal to �ux. Once both the phase margin and crossover frequency errors are
corrected, the phasor diagram becomes as shown in Fig. 7.7(d).

From the above-mentioned discussion, it can be seen how the tuning error can
be decomposed into a component �ε‖ parallel to �ux, and the corresponding orthogonal
component �ε⊥, parallel to �ux⊥ � −j�ux,

�ε = �ε‖ + �ε⊥. (7.18)

Such decomposition is illustrated in Fig. 7.8, the significance of which can be
described as follows:

• �ε‖ can be thought of originating mostly from the error in the crossover fre-
quency. Tuning for �ε‖ = 0 means tuning the loop crossover frequency.

• �ε⊥, on the other hand, can be mostly associated with the error in-phase margin.
Tuning for �ε⊥ = 0 therefore means tuning the loop phase margin.

These conclusions allow construction of an autotuner using two feedback loops,
a crossover frequency tuning loop correcting �ε‖ and a phase margin tuning loop cor-
recting �ε⊥.

The remaining item to be discussed before showing the autotuner block diagram
is how to construct signals proportional to �ε‖ and �ε⊥ in the time domain. Inset 7.1
deals with a general way to accomplish this, and how the projection operation relates
to the phasor representations of signals.

�

�

�

�
Inset 7.1 – Signal projection and its phasor representation

Consider two phasors �a and�b associated with two time-domain oscillations a[k] and
b[k], respectively,

�a ↔ a[k] = am sin(ωkTs + ϕa),

�b ↔ b[k] = bm sin(ωkTs + ϕb).
(7.19)
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Multiplication of the time-domain signals yields

p‖[k] � a[k] × b[k] = am sin(ωkTs + ϕa) × bm sin(ωkTs + ϕb)

=
ambm

2
(cos(ϕb − ϕa) − cos(2ωkTs + ϕa + ϕb)). (7.20)

The dc term

p‖ � ambm

2
cos (ϕb − ϕa) =

bm

2
am cos (ϕb − ϕa)︸ ︷︷ ︸

Component of ã along b̃

(7.21)

contains a factor proportional to the projection of �a along�b. Similarly, multiplication
of a[k] by the 90◦-delayed version b⊥[k] of b[k] yields

p⊥[k] � a[k] × b⊥[k] = am sin(ωkTs + ϕa) × bm sin
(
ωkTs + ϕb −

π

2
)

= −am sin(ωkTs + ϕa) × bm cos(ωkTs + ϕb)

=
ambm

2
(sin(ϕb − ϕa) − sin(2ωkTs + ϕa + ϕb)) , (7.22)

and the dc term

p⊥ � ambm

2
sin(ϕb − ϕa) =

bm

2
am sin(ϕb − ϕa)︸ ︷︷ ︸

Component of ã along b̃⊥ � −j b̃

(7.23)

contains a factor proportional to the component of �a orthogonal to�b.
In summary, the above-mentioned time-domain multiplications allow extraction of
the in-phase and quadrature components of a[k] with respect to b[k] as the dc compo-
nents of time-domain products. The second terms in (7.20) and (7.22), on the other
hand, represent oscillations at twice the frequency ω and act as disturbances for the
intended decomposition.
Lastly, note that quantities

p‖ � ambm

2
cos(ϕb − ϕa) and p⊥ � ambm

2
sin(ϕb − ϕa) (7.24)

can be thought of as the real and imaginary components of the complex quantity

�a∗ ×�b

2
=

ambm

2
ej(ϕb−ϕa)

=
ambm

2
(cos(ϕb − ϕa) + j sin(ϕb − ϕa))

= p‖ + jp⊥, (7.25)

�a∗ indicating the phasor complex conjugate of �a.
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7.3.2 Implementation of a PD Autotuner

A block diagram of the PD autotuning system is reported in Fig. 7.9, with a pro-
grammable PID compensator in the parallel form. First, dc components are eliminated
from ux[k] and uy[k] by subtraction of the steady-state value U of the control action.
In practice, the integral term ui[k] of the control action can be employed as U . This is
possible, thanks to the inherently filtered nature of this signal, which makes it insen-
sitive to the perturbation upert [k]. Next, two delay blocks are employed to generate
a ϕm-delayed version ûy,ϕm

[k] of ûy[k] and a 90◦-delayed version ûx⊥[k] of ûx[k].
The time-domain tuning error ε[k] is then calculated as

ε[k] � ûx[k] − ûy,ϕm
[k], (7.26)

which is the time-domain counterpart of (7.15). With ε[k] now available, the
time-domain products p‖[k] and p⊥[k] are calculated as

p‖[k] � ε[k] × ûx[k],

p⊥[k] � ε[k] × ûx⊥[k].
(7.27)

From Inset 7.1, the dc component p‖ of p‖[k] is related to �ε‖, whereas dc component
p⊥ of p⊥[k] is related to �ε⊥. On the basis of the foregoing discussions, forcing p‖ to
zero accomplishes tuning of the crossover frequency. Similarly, forcing p⊥ to zero
amounts to tuning for the desired phase margin ϕm.

In the PD tuning discussed here, the integral gain Ki is kept fixed, while the
proportional and the derivative gains Kp and Kd are adjusted in order to force �ε = 0.
This is accomplished by two integral compensators inserted in the tuning loop, which

uy[k]

e[k]
GPID(z; K)

KiKp Kd

+
ux[k]

Kp[k]

Ki

Kd[k]

upert [k]

ε[k]

ϕm delay
π/2 delay

×
×

+−
ûx⊥[k]

p⊥[k]

p [k]

α⊥
1 − z−1

α

1 − z−1

−
+U −

+ U

ûy,ϕm [k]

ûy[k] ûx[k]

Figure 7.9 A block diagram of the PD autotuning approach.
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generate Kd and Kp as the result of the accumulation of p‖[k] and p⊥[k],

Kd[k] = α‖p‖[k] + Kd[k − 1],

Kp[k] = α⊥p⊥[k] + Kp[k − 1],
(7.28)

where coefficients α‖ > 0 and α⊥ > 0 determine the speed of the tuning loop as well
as its stability.

The reason why Kd is employed to tune for �ε‖ = 0 is that Kd has a major
influence on the high-frequency PID gain and directly affects the loop gain crossover
frequency. On the other hand, Kp mostly affects the high-frequency phase response
by displacing the PD zero. For this reason, the phase margin tuning �ε⊥ = 0 is accom-
plished by acting on Kp.

The tuning control law (7.28) correctly implements a negative—that is,
corrective—adjustment:

• A negative error in the crossover frequency implies a positive �ε‖ (i.e., oriented
as �ux). In turn, a positive �ε‖ determines an increase in Kd and, therefore, an
increase in crossover frequency.

• A negative error in the phase margin implies a negative �ε⊥ (oriented opposite
to �ux⊥). In turn, a negative �ε⊥ determines a decrease in Kp, which moves the
PD zero to lower frequencies, thus increasing the phase boost.

Negative feedback allows the tuning integrators to null the dc components of
p‖[k] and p⊥[k] and force the system to �ε = 0. Observe that the oscillating terms at
twice ωp present in the products p‖[k] and p⊥[k] have the sole effect of introducing
a small oscillation on top of Kp[k] and Kd[k]. As the tuning loop is normally much
slower than the main converter regulation loop, an oscillation at 2ωp is very well
filtered by the tuning integrators.

Implementation of the ϕm delay, as well as of the 90◦ delay, can be performed
by simple digital filtering. Recall first that a phase delay corresponding to one switch-
ing step is described by the operator z−1. A fractional delay comprised between 0 and
one switching period, on the other hand, can be implemented as

Fa(z) � 1 − a + az−1, 0 ≤ a ≤ 1. (7.29)

Bode plots of Fa(z) for various values of a are reported in Fig. 7.10. The phase delay
increases with a, is zero for a = 0, and corresponds to a one-step delay for a = 1.
Parameter a is related to the intended phase rotation ϕ = ∠Fa(ejωTs) at the pertur-
bation frequency ωp by

a =
tan ϕ(

1 − cos (ωpTs)
)
tan ϕ − sin (ωpTs)

≈ tan |ϕ|
ωpTs

, (7.30)

where the approximation holds well for frequencies up to one-tenth of the switching
rate.
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Figure 7.10 Bode plots of Fa(z) for different values of a.

When a phase delay comprised between N and N + 1 switching steps needs
to be realized, one can simply cascade an N -step delay z−N to a suitably designed
fractional delay Fa(z),

F (z) � z−NFa(z) = z−N
(
1 − a + az−1). (7.31)

This solution allows delaying the signal by the specified amount with negligible atten-
uation. Furthermore, whenever the required delay is exactly a multiple NTs of the
switching period, the above-mentioned filtering reduces to a pure N -steps delay by
setting a = 0.

7.3.3 Simulation Example

The injection-based PD autotuning approach is now evaluated in simulation on the
synchronous Buck voltage-mode control example examined throughout the previous
chapters. As a first simulation test, assume nominal values of the power converter
parameters, but the initial values of the proportional and the derivative compensator
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gains are only 20% of their target value. From (6.50),

Ǩp =
24.76

5
≈ 4.95,

Ǩi = 0.5961,

Ǩd =
190.5

5
≈ 38.1.

(7.32)

Recall from Chapter 4 that target values have been designed to achieve a crossover
frequency of 100 kHz and a 45◦ phase margin. With the initial values so modified,
both the control bandwidth and the phase margin become severely compromised, as
illustrated by the loop gain Bode plots of Fig. 7.11. After the autotuning process,
they are restored to specification. A comparison between closed-loop responses to a
0 A→5 A step load before and after the tuning is reported in Fig. 7.12 demonstrating
how the autotuner is able to achieve a high-performance control loop.

The tuning process itself is reported in Fig. 7.13 in terms of the time-domain
evolution of the PID gains. The autotuner is enabled at t = 0 and quickly adjusts the
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Figure 7.11 Loop gain Bode plots before and after the tuning process, first simulation
scenario.
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Figure 7.12 Closed-loop response to a 0 A→5 A step load before and after the tuning
process, first simulation scenario.
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simulation scenario.
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Figure 7.14 Output voltage and inductor current at the onset of the tuning process, first
simulation scenario.
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Figure 7.15 Evolution of ux[k] and uy[k] during the tuning process, first simulation
scenario.

compensator gains toward the tuning target. The output voltage and the inductor cur-
rent waveforms at the onset of the tuning process are reported in Fig. 7.14. Evolution
of the signals ux[k] and uy[k] during the tuning process is depicted in Fig. 7.15.

A second simulation scenario assumes, as an initial condition for the tuning
process, that the nominal compensator values are as determined in Chapter 6 and
that the output capacitance in the power converter is two times larger than the value
assumed in the design process,
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C ′ = 2 × C = 2 × 200 μF = 400 μF. (7.33)

The larger output filter capacitance implies a lower resonant frequency with respect
to the design assumptions and, given the ≈ −20 dB/decade slope of the system loop
gain above such frequency, approximately half the crossover frequency with respect
to the design target fc = 100 kHz. This scenario is commonly encountered in prac-
tice, where the load presents an uncertain capacitive load for the point-of-load con-
verter.

The tuning process is illustrated in Fig. 7.16. The derivative gain is tuned to
roughly twice the initial value to compensate for the corresponding lower gain of
the plant. Simultaneously, the proportional gain is increased, decreasing the PID
phase boost around 100 kHz. The reason for this behavior is easily understood from
Fig. 7.3, which clearly shows that an increase in Kd brings, as a side effect, an
increase in the PID phase boost. The autotuner counteracts this effect by increasing
Kp, which decreases the PID leading action as illustrated in Fig. 7.2. This is an
example of the interacting nature of the PID gains on the compensator magnitude
and phase responses.

The Bode plots of the system loop gains before and after the tuning step are
reported in Fig. 7.17, while Fig. 7.18 illustrates the closed-loop response of the
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Ǩi
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Figure 7.16 Proportional, integral, and derivative PID gains during the tuning process,
second simulation scenario.
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Figure 7.17 Loop gain Bode plots before and after the tuning process, second simulation
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−0.1 0 0.1 0.2 0.3 0.4 0.5
1.7

1.75

1.8

1.85

1.9

Time (ms)

(V
)

vo(t), after tuning

vo(t), before tuning

Figure 7.18 Closed-loop response to a 0 A→5 A step load before and after the tuning
process, second simulation scenario.

pre- and posttuned converter to a 0- to 5-A step load variation. One may note that
the autotuner is able to improve the dynamic response in the presence of substantial
uncertainty in the value of the output filter capacitance.
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7.3.4 Small-Signal Analysis of the PD Autotuning Loop

As discussed in Section 7.3.2, parameters α‖ and α⊥ in the PD autotuner shown in
Fig. 7.9 affect the dynamic response of the tuning process. It is understood that larger
α‖ and α⊥ result in faster tuning, but quantitative results are needed in order to design
the tuning loops properly. This section is focused on a small-signal analysis of the
dynamics of the PD autotuning loops.

Referring to Fig. 7.19, the autotuning system described in Section 7.3.2 is a
multiloop feedback with two feedback paths, one acting to tune Kd and another acting
to tune Kp.

It is important to clarify first what the “small-signal analysis” means for the
autotuning system of Fig. 7.9. As suggested in Fig. 7.19, the autotuning feedback
must ideally be cut at both Kd and Kp, an operation that defines signal pairs (Kd,x,
Kp,x) and (Kd,y,Kp,y). The end goal of the small-signal analysis is to understand
how small perturbations (K̂d,x, K̂p,x) on Kd,x and Kp,x propagate throughout the
multiloop feedback to produce corresponding perturbations (K̂d,y, K̂p,y) on Kd,y

and Kp,y .
In the determination of this dependence, two complications arise:

• As already seen, products p‖ and p⊥ contain not only a dc component but also an
oscillating component at twice the perturbation frequency ωp. For small-signal
analysis purposes, only the small variations in the low-frequency components
p‖[n] and p⊥[n] are relevant, and any information related to the oscillating com-
ponent is disregarded. This is analogous to an averaging approximation applied
to the tuning loop dynamics.

• A small perturbation (K̂d,x, K̂p,x) alters the amplitude/phase relationships
between ûx[k] and ûy[k], which in turn oscillate at ωp due to the input pertur-
bation upert [k]. It is precisely these slow changes in the phasor relationships

uy[k]

e[k]
+

ux[k]

+
−

vo[k]

Vref

Digital
autotuner

Kp,x[n]

Ki[n]

Kd,y[n]

upert[k]

GPID(z;K)

KiKp Kd

Kp,y[n]

Kd,x[n]

Modulator +
power converter

Figure 7.19 Determination of the autotuning loop gains.
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Figure 7.20 Small-signal block diagram of the autotuning loop.

between �ux and �uy that must be described by the small-signal analysis, in a
way similar to dynamic phasor analysis of resonant converters.

With the above-mentioned remarks in mind, a small-signal representation of
the autotuning loop is reported in Fig. 7.20. Similarly to what has been done in the
previous chapters, the loop is subdivided into its uncompensated dynamics and its
compensation. The uncompensated loop gains Tdd,u(z), Tdp,u(z), Tpd,u(z) and
Tpp,u(z) relate the small-signal perturbations (K̂d,x, K̂p,x) on Kd,x and Kp,x to the
small-signal perturbations (p̂‖, p̂⊥) on p‖ and p⊥,

⎡
⎣ p̂‖(z)

p̂⊥(z)

⎤
⎦ =

⎡
⎣ −Tdd,u(z) −Tdp,u(z)

−Tpd,u(z) −Tpp,u(z)

⎤
⎦

⎡
⎣ K̂d,x(z)

K̂p,x(z)

⎤
⎦ . (7.34)

It will be shown below that the uncompensated loop gains are, in fact, frequency inde-
pendent. Consequently, the entire dynamics of the tuning process is determined by
the integral compensators. To see this, start by deriving a phasor relationship between
the tuning error �ε and the system loop gain T (z). From (7.17) and (7.14),

�ε = �ux − �uye−jϕm = �ux

(
1 + e−jϕmT (ωp;Kd,Kp)

)
, (7.35)

where T (ωp;Kd,Kp) denotes the loop gain T (z) evaluated at z = ejωpTs and where
dependence of T (z) on Kd and Kp is explicitly indicated. Furthermore, from the
injection equations (7.13) and (7.14), it follows that

�ux = �uy + �upert = �upert − T (ωp;Kd,Kp)�ux ⇒ �ux =
�upert

1 + T (ωp;Kd,Kp)
.

(7.36)
Combination of the foregoing results yields

�ε =
1 + e−jϕmT (ωp;Kd,Kp)

1 + T (ωp;Kd,Kp)
�upert . (7.37)
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This is the nonlinear phasor relationship between compensator gains Kd and Kp and
the phasor representation �ε of the tuning error.

Next, dependence of p‖ and p⊥ on �ε must be determined. From (7.27), these
signals are obtained by multiplication of ε[k] with ûx[k] and ûx⊥[k], respectively.
From (7.25), then, complex quantity

�ε∗ × �ux

2
=

�ε∗

2
×

�upert

1 + T (ωp;Kd,Kp)
(7.38)

has p‖ and p⊥ as its real and imaginary parts, respectively. Combining the
above-mentioned equation with (7.37), one has

�ε∗ × �ux

2
=

(
1 + ejϕmT (ωp;Kd,Kp)

)
|�upert |2

2
∣∣1 + T (ωp;Kd,Kp)

∣∣2 � f(Kd,Kp). (7.39)

Complex function f of the real quantities Kd and Kp summarizes the nonlinear rela-
tionship between the compensator gains and quantities p‖ and p⊥,

p‖ = [ f(Kd,Kp)],

p⊥ = �[ f(Kd,Kp)],
(7.40)

illustrated in Fig. 7.21 in block diagram form. Linearization of the foregoing
equations with respect to Kd and Kp provides the four small-signal uncompensated
loop gains of Fig. 7.20,

⎡
⎣ −Tdd,u(z) −Tdp,u(z)

−Tpd,u(z) −Tpp,u(z)

⎤
⎦ �

⎡
⎢⎢⎢⎢⎣

∂[f ]
∂Kd

∂[f ]
∂Kp

∂�[f ]
∂Kd

∂�[f ]
∂Kp

⎤
⎥⎥⎥⎥⎦ , (7.41)

where partial derivatives are intended to be evaluated at a given steady-state operat-
ing point for the autotuner. As anticipated, uncompensated loop gains turn out to be
constants because the nonlinear model from which they are derived expresses static
relationships between phasors, and there are no complex dynamics associated with
it. Nonetheless, the approximations made to arrive at the above-mentioned result are
entirely acceptable for an accurate small-signal analysis and design of the tuning
loop.

Kp,x[n]

Kd,x[n] p̄ [n]

p̄⊥[n]
[·]

[·]

f(Kd, Kp)

1 + ejϕmT (ωp; Kd, Kp) |upert |2
2|1 + T(ωp; Kd, Kp)|2

Figure 7.21 A block
diagram of the nonlinear
relationship between
(Kd, Kp) and (p‖, p⊥).
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With the uncompensated loop gains so derived, consider now the problem of
designing the autotuning loop compensation. One approach would be to treat the auto-
tuning loop as a two-input, two-output system and as design compensations for Kd

and Kp simultaneously. In the following, a simplified approach is undertaken, more
similar to the design of the multiloop controller already encountered in Chapter 4 for
the synchronous Buck converter. More precisely, a fast inner loop acting on Kp is
designed for the phase margin tuning, whereas a slower, outer loop acts on Kd and
tune the system crossover frequency. The rationale behind this design choice is to have
the phase margin tuning sufficiently fast so that a stable phase margin is guaranteed
at all times, while the crossover frequency can be adjusted more slowly.

With the Kd loop open, the compensated loop gain of the phase margin tuning
loop is simply

Tϕm
(z) � α⊥

1 − z−1 Tpp,u . (7.42)

Selecting α⊥ for a desired crossover frequency is then straightforward.
Once the integral compensator of the phase margin tuning loop is inserted and

the loop closed, one has K̂p,y = K̂p,x, and equations governing the dynamics of Kd

become
K̂d,y(z) = −Tdd,uK̂d,x(z) − Tdp,uK̂p,x(z),

K̂p,x(z) = K̂p,y(z) = −
Tpd(z)

1 + Tϕm
(z)

K̂d,x(z),
(7.43)

with
Tpd(z) � α⊥

1 − z−1 Tpd,u. (7.44)

Therefore, the uncompensated dynamics of the crossover frequency tuning loop is

Tfc,u(z) = −
K̂d,y(z)

K̂d,x(z)
= Tdd,u −

Tdp,uTpd(z)
1 + Tϕm

(z)
, (7.45)

and the compensated crossover frequency tuning loop gain is

Tfc
(z) =

α‖
1 − z−1 Tfc,u(z) . (7.46)

Bode plots of Tϕm
(z) and Tfc

(z) for the PD autotuner tested by simulations in
Section 7.3.3 are illustrated in Fig. 7.22.

Although developed for the specific case of PD tuning, the methodology
employed in this section for the small-signal analysis of the tuning loop is
generally applicable to other injection-based autotuning cases and other PID
realizations.
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Figure 7.22 Bode diagrams of the crossover frequency and phase margin tuning loop gains.

7.4 DIGITAL AUTOTUNING BASED ON RELAY
FEEDBACK

Relay feedback tuning of PID compensators has been long proposed in the litera-
ture as a mean for automatically identifying the so-called ultimate period of a plant,
defined as the period of the oscillation that arises when the closed-loop system is
brought to have zero phase margin by a proportional compensator of suitably large
gain [85, 83]. With the ultimate period so identified, the frequency-domain version of
the Ziegler–Nichols method provides a first-cut choice for the compensator param-
eters [82, 85, 127]. More recent formulations of the relay feedback autotuning pro-
pose extensions of the method for identifying the process response at an arbitrary
frequency [84].

This section discusses the theory of digital relay feedback operation, as well as
a method proposed in the literature to use it as a digital autotuning method for dc–dc
switched-mode power converters. The implementation presented here is based on the
approach described in [89]. A modification of the relay feedback method for a more
robust crossover frequency tuning is discussed in [90].
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7.4.1 Theory of Operation

A relay is an instantaneous nonlinear system implementing the function er = fr(e)
defined as

er = fr(e) =
{

+Ar e > 0,
−Ar e ≤ 0,

(7.47)

with Ar > 0 defined as the relay amplitude. When inserted into an existing feedback
loop, the strong nonlinearity of the relay triggers a limit-cycle oscillation whose fre-
quency and amplitude carry information related to the plant, which can be used for
tuning purposes.

To present the theory in a suitably general manner, consider the feedback sys-
tem depicted in Fig. 7.23, where a relay block has been inserted in front of the com-
pensator Gc(z). In the following, Gc(z) is always assumed to contain an integral
action. Furthermore, a filter F (z) is interposed between the compensator and the
power converter.

Owing to the presence of the relay block, the system depicted in Fig. 7.23
oscillates at a certain frequency fosc . An intuitive explanation for the existence of
such oscillation is that, due to the integral action present in Gc(z), signal er[k] must
average to zero over time. If this were not the case, the relay block would output a
positive or negative signal and force Gc(z) out of this condition. As the relay output
er[k] cannot be zero instantaneously by virtue of (7.47), the only way er[k] can have
zero average value is for the relay input e[k] to periodically oscillate around zero.
Assuming such oscillation to be essentially sinusoidal due to the low-pass nature of
the power converter, the relay block output er[k] is a square wave of amplitude +Ar

and fundamental frequency fosc . In the language of nonlinear systems, the oscillation
that arises in the system because of the relay nonlinearity is another example of limit
cycling.

The frequency at which such limit cycle sustains itself must fulfill the require-
ment that

∠Gc(fosc) + ∠Tu(fosc) + ∠F (fosc) = −π,
Phase shift of Gc (z ) at fosc Phase shift of Tu (z ) at fosc Phase shift of F (z ) at fosc

(7.48)

where Tu(z) represents, as usual, the uncompensated small-signal transfer function
of the converter. Observe that the relay block does not contribute to the loop phase
response, as the fundamental component of er[k] is in phase with e[k].

e[k]

+
−

vo[k]

Vref

Digital relay

F(z)−Ar

+Ar er[k] u[k]

Compensator Filter

Modulator +
power converter

Gc(z)

Figure 7.23 Block diagram of a feedback loop with a digital relay.
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This qualitative explanation can be made more formal and insightful with the
aid of the describing function theory. The describing function of a static nonlinearity
such as the one implemented by the relay function (7.47) describes how the non-
linearity propagates, in amplitude and phase, an input sinusoidal signal when only
the fundamental component at the output is observed. In the case of the relay, the
describing function of (7.47) is

Ψ(aosc) � 4Ar

πaosc
, (7.49)

where aosc represents the oscillation amplitude as measured on e[k]. Equation (7.49)
simply expresses the ratio between the fundamental component amplitude 4Ar/π of
er[k] and the input amplitude aosc of e[k]. Quantity Ψ(aosc) is real, implying that zero
phase shift is introduced by the relay block.

With the describing function so defined, a nonlinear loop gain TNL(z; aosc) can
be introduced as

TNL(z; aosc) � Ψ(aosc)T (z)F (z), (7.50)

where T (z) = Gc(z)Tu(z) is the conventional small-signal loop gain considered in
the previous chapters. The oscillation condition is then formally expressed as

1 + TNL(z; aosc) = 0 , (7.51)

known as the first-order harmonic balance equation [185], which can be interpreted
as a generalization of the Barkhausen condition for oscillations in linear feedback sys-
tems. Equation (7.51) leads to the phase balance equation (7.48) and to a magnitude
balance equation

4Ar

πaosc
Tfosc

Ffosc
= 1, (7.52)

with Ffosc
and Tfosc

magnitudes of F (z) and T (z) at fosc . The magnitude balance
equation states that it is the relay gain—as expressed by Ψ(aosc)—that makes the
nonlinear loop gain magnitude equal to one. If the relay were removed from the
system, the oscillation would decay. Furthermore, the oscillation amplitude aosc is
determined by the magnitude response of F (z) and T (z) at fosc .

7.4.2 Implementation of a Digital Relay Feedback Autotuner

The above-mentioned equations set the framework necessary for describing the basics
of relay feedback autotuning. Assume that the compensator is implemented in the PID
programmable cascade form (7.3),

Gc(z) = GPID(z;κ) =
Ki

1 − z−1

(
1 − κ1 + κ1z

−1) (
1 − κ2 + κ2z

−1). (7.53)
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The two compensator zeros z1,2 are located at

z1,2 = −
κ1,2

1 − κ1,2
, (7.54)

and it can be seen that 0 ≤ z1,2 < 1 as long as κ1,2 ≤ 0.
The tuning approach is a three-step procedure [89]:

1. Tuning of z1 by placing it at the converter resonant frequency

2. Tuning of z2 to achieve a desired phase margin

3. Tuning of the overall PID gain Ki to achieve a desired crossover frequency

The general block diagram of the feedback configuration during the tuning
phases is reported in Fig. 7.24.

Phase 1: Tuning of z1 Initially, κ1 = κ2 = 0, so that

GPID(z;κ) =
Ki

1 − z−1 . (7.55)

Furthermore, let Ki be sufficiently small to realize a safe, low-bandwidth compensa-
tion for the converter. If the filtering block is removed from the system (F (z) = 1),
the phase balance equation becomes

∠GPID(fosc) + ∠Tu(fosc) = −π

⇒ ∠Tu(fosc) = −π − ∠GPID(fosc) = −π

2
,

(7.56)

e[k]

+
− vo[k]

Vref
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u[k]

Compensator Filter
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power converter

er[k]
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κ1 κ2Ki

Digital
autotuner

Filter enable

Figure 7.24 Feedback loop configuration during the tuning phases.
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as ∠GPID(fosc) ≈ −π/2. For a Buck converter, the frequency at which its
control-to-output phase response is equal to −π/2 is very close to the resonant
frequency f0 of the converter LC filter. In other words,

fosc ≈ f0, (7.57)

and the limit cycle that arises in the system can be used to identify the converter
resonant frequency.

Digitally, measurement of the oscillation frequency can be implemented with
a simple counter, clocked at the switching rate fs and reset at the beginning of the
measuring process, and kept in free-running state for a predetermined number N of
oscillation periods. An oscillation period can be detected either from the zero cross-
ings of the error signal e[k] or from the sign changes of er[k], which is more robust
when a small hysteresis window is implemented in the relay function to eliminate
chattering noise incoming from the sensing path. If Ns is the number of counter ticks
at the end of the measurement, we have

NsTs = NTosc ⇒ fs

fosc
=

Ns

N
. (7.58)

To see how κ1 is to be selected in order to place the first PID zero in correspon-
dence with the converter resonant frequency, consider the approximation(

1 − κ1 + κ1z
−1)∣∣

z=ejωTs
= 1 − κ1 + κ1e

−jωTs

≈ 1 − κ1 + κ1 (1 − jωTs)

= 1 − jκ1ωTs, (7.59)

which suggests

ωz1 ≈ − fs

κ1
(7.60)

as an estimate for the frequency break point associated with z1. Combining the
above-mentioned result with (7.58), choosing

κ1 ← − 1
2π

fs

fosc
= − 1

2π

Ns

N
(7.61)

forces ωz1 ≈ 2πfosc , as intended. Observe that quantity 2πN is known to the auto-
tuner and that the above-mentioned operation reduces to storing into κ1 a scaled
version of the counter ticks Ns acquired during the Phase 1 measurement.

Phase 2: Tuning of z2 The second PID zero is placed in order to achieve a desired
phase margin ϕm at the intended crossover frequency. More precisely, this means that
z2 must be positioned so that the linear part of the loop gain has a phase response
equal to −π + ϕm at the target fc, or



270 CHAPTER 7 DIGITAL AUTOTUNING

∠T (fc) = ∠GPID(fc) + ∠Tu(fc) = −π + ϕm. (7.62)

Plugging the above-mentioned target relationship into the phase balance equation
(7.48) and assuming fc = fosc yields

−π + ϕm + ∠F (fc) = −π ⇒ ∠F (fc) = −ϕm, (7.63)

which can be interpreted as follows: if a filter F (z) lagging ϕm degrees at the target
crossover frequency fc is introduced in the relay feedback loop, and if z2 is tuned
so that fosc = fc, then the phase margin constraint (7.62) for the linear loop gain is
satisfied.

The above-mentioned idea is implemented as follows. An initial value for κ2
is first selected, keeping κ1 as already determined in the previous tuning phase via
(7.61). Next, a search algorithm adjusts κ2 until fosc = fc. One way to do this is
by using the flowchart of Fig. 7.25, which implements a form of binary search. As
oscillation occurs at the frequency where the phase boost induced by z2 exactly com-
pensates the filter phase lag, decreasing the frequency break point ωz2 results in an
increase in fosc . Conversely, increasing ωz2 moves fosc to lower values. The flowchart
of Fig. 7.25 employs this principle, accounting for the fact that any change of κ2 in
the positive direction moves the frequency break point ωz2 of the PID zero to higher

κ2,h ← κ2

κ2 ← κ2 + κ2,l

2

κ2,l ← κ2

κ2 ← κ2 + κ2,h

2

fosc > fc
Yes No

Start

κ2,h − κ2,l < δ

Measure fosc

No

End

Yes

Initialize search range [κ2,l, κ2,h]:
κ2,l: lower bound
κ2,h: upper bound

κ2 ← κ2,h + κ2,l

2

Figure 7.25 Flowchart for the binary search of κ2.
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frequencies, while decreasing κ2 has the opposite effect. This tuning phase ends when
the upper and lower search bounds for κ2, respectively, indicated as κ2,h and κ2,l in
Fig. 7.25, differ by less than a predetermined amount δ.

An important point to note here is that the above-mentioned frequency search
relies on the monotonicity of the phase response of T (z)F (z). If the phase response
of such plant does not monotonically decrease with increasing frequency, frequency
intervals appear in which the relay-induced limit cycle is unstable. Corresponding
frequencies then become unreachable by the relay autotuner, compromising the effec-
tiveness of the method.

Phase 3: Tuning of Ki With κ1 and κ2 now determined, the PID gain Ki must be
adjusted for the desired crossover frequency. Measurement of the oscillation ampli-
tude aosc , if performed with adequate accuracy, can provide the scale factor necessary
to adjust Ki. To see this, consider the magnitude balance equation (7.52) after the
tuning of z2, that is, when the system oscillates at fosc = fc,

4Ar

πaosc
Tfosc

Ffosc
= 1 ⇒ Tfosc

=
πaosc

4ArFfosc

. (7.64)

Hence, if aosc can be measured, the magnitude balance equation provides the value
of Tfosc

at the target crossover frequency. Scaling Ki by the reciprocal of this value

Ki ←
4ArFfosc

πaosc
× Ki (7.65)

performs the intended tuning. After the removal of the relay block and the filter, one
has Tfosc

= 1 as desired.

7.4.3 Simulation Example

Simulation results of relay feedback autotuning of the synchronous Buck converter
example are reported in Figs. 7.26–7.29. Tuning starts at t = 0 from an initial
closed-loop condition in which a low-bandwidth integral compensator is regulating
the output voltage. Once enabled, the autotuner enters phase 1 and the system starts
oscillating close to the converter resonant frequency. In this condition, the oscillation
period is measured over N = 10 oscillation intervals, allowing to tune z1 as explained
previously. Next, phase 2 begins and κ2 undergoes a number of consecutive adjust-
ments until the system oscillates at fosc ≈ fc ≈ 100 kHz. At the end of this phase,
the linear loop gain has a phase lag equal to −π + ϕm = −180◦ + 45◦ = −135◦

at fc. This is shown in Fig. 7.29, in which the linear loop gain T (z) is illustrated
at the various tuning steps. The oscillation amplitude aosc is also measured during
phase 2 and used in phase 3 to calculate the overall PID gain Ki and position fc at
the desired value of 100 kHz.
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Figure 7.26 Output voltage and inductor current during the tuning process.

7.5 IMPLEMENTATION ISSUES

In the previous sections, operating principles are presented for two different digital
autotuning techniques. In practical digital realizations of these autotuners, a number
of items have to be carefully considered, some of which are briefly summarized here:

• Output voltage perturbation. Any identification approach inevitably perturbs
the plant under investigation. In general, such perturbation must be limited
to acceptable values not only to prevent potentially destructive situations
for the load but also to guarantee normal operation of the converter. In the
injection-based approach, the amplitude of output voltage oscillation is clearly
related to the amplitude of upert [k] and can therefore be controlled by acting on
ûm. An injection amplitude controller is included, for instance, in the stability
margin monitor presented in [183], which is based on the similar principles as
the injection-based autotuner presented in this chapter.
In the relay feedback autotuner, the oscillation amplitude can be reduced by
acting on the relay amplitude Ar. Observe, however, that reducing aosc impacts
the accuracy of the crossover frequency tuning during phase 3. A modified relay
feedback autotuner for more robust and precise crossover frequency tuning is
described in [90].
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• Perturbation signal. The injection-based approach presented in Section 7.3
makes use of a sinusoidal perturbation signal upert [k]. In a low-complexity dig-
ital implementation, however, generation of a sinusoidal signal of prescribed
amplitude and frequency may present a problem. For this reason, practical
implementations of this method employ a square-wave waveshape for upert [k],
which is much easier to generate [92, 93, 95, 97]. However, a square-wave



274 CHAPTER 7 DIGITAL AUTOTUNING

100 1k 10k 100k 500k
−60

−40

−20

0

20

40

60

Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

100 1k 10k 100k 500k
−360

−270

−180

−90

0

Frequency (Hz)

P
ha

se
 (
°)

After tuning of κ2

After tuning of Ki
ˇ

|T(z)|

T(z)

After tuning of κ1

Before tuning

Figure 7.29 Bode plots of the linear loop gain T (z) at various steps of the tuning process.

perturbation no longer excites the system at a single frequency, and the
phasor analysis of the tuning operation and the tuning dynamics is no longer
applicable. In particular, tuning errors can arise due to the intermodulation of
perturbation harmonics occurring as a result of the time-domain multiplication
operation.

• Quantization effects. Tuning errors can also arise due to amplitude quantiza-
tion of the signals processed by the digital autotuner. In the injection-based
approach, signals ux and uy are usually available with high resolution inside
the digital controller, and their quantization does not usually represent an issue
unless the perturbation amplitude ûm is reduced to extremely low values. On
the other hand, the relay feedback approach involves the measurement of aosc
from the digital error signal e[k], the resolution of which is determined by
the A/D converter. For this reason, accuracy of the relay feedback autotuner
strongly degrades when operating on extremely small output voltage perturba-
tions.
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7.6 SUMMARY OF KEY POINTS

• Autotuning refers to the digital controller ability to adjust its parameters in
response to on-line identification of the loop dynamics. Various forms of auto-
tuning include one-step tuning, performance tracking, and adaptive tuning.

• Identification and tuning are the two basic steps performed by any digital auto-
tuner. They can be performed in sequence or nested into a tuning loop that
adjusts the compensator parameters iteratively. Depending on the autotuning
technique, identification can involve just a few relevant parameters or the entire
converter frequency response.

• Tuning can be open-loop or closed-loop according to the system configuration
during the tuning step. In this chapter, only closed-loop autotuning techniques
are discussed, in which the power converter is feedback-controlled at all times.

• Various methods for perturbing the system to be identified exist. A digital per-
turbation signal can be generated inside the digital control system and super-
imposed to the control command. Alternatively, several autotuning techniques
rely on intentionally triggering limit cycle oscillations in the system.

• A programmable compensator structure is required for on-line adjustments
of the compensation gains. The parallel and cascade structures are the most
common because the mid-frequency and high-frequency portions of the com-
pensator response can be easily adjusted without altering the low-frequency
behavior. This is a fundamental requirement in order not to compromise system
stability during the tuning process.

• In the injection-based autotuning approach, a digital perturbation is superim-
posed to the control command, while the autotuner monitors the signals before
and after the injection point. By ensuring a proper amplitude and phase relation-
ship between the two, the feedback loop can be tuned for a desired crossover
frequency and phase margin. In its basic form, this is a two-parameter tuning
and can be used for PD or PI structures.

• In the relay feedback autotuner, the perturbation is a limit cycle triggered by
the insertion of a strong nonlinearity inside the feedback loop. Frequency
and amplitude of such limit cycle carry information on the plant under
control and are used by the digital autotuner to achieve a desired crossover
frequency and phase margin.





A P P E N D I X A
DISCRETE-TIME LINEAR
SYSTEMS AND THE
Z-TRANSFORM

This appendix presents a brief introduction to discrete-time systems and the
Z-transform. Properties of discrete-time systems are first presented in the time
domain, based on the theory of constant coefficients difference equations. The
Z-transform is then introduced as a tool for analyzing discrete-time systems in the
frequency domain.

A.1 DIFFERENCE EQUATIONS

In the following text, linear, causal, and time-invariant discrete-time systems having
a single input u[k] and a single output y[k] are considered. Such systems are described
by linear, constant coefficients difference equations of the type

y[k] =
N∑

i=1

aiy[k − i] +
M∑
i=0

biu[k − i] , (A.1)

with the further assumption that coefficients ai and bi are real and that aN �= 0 and
bM �= 0.

System output y[k] is uniquely determined, for every k ≥ 0, from the input
signal u[k], k ≥ 0, and from the initial conditions on y[k], −N ≤ k ≤ − 1,

y[−1] = y−1,
y[−2] = y−2,
. . .

y[−N ] = y−N ,

(A.2)
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and on u[k], −M ≤ k ≤ − 1,

u[−1] = u−1,
u[−2] = u−2,
. . .

u[−M ] = u−M .

(A.3)

Example A.1.1: Consider a first-order system (N = 1, M = 0)

y[k] = ay[k − 1] + bu[k], (A.4)

with initial condition y[−1] = y−1 and a generic input u[k]. The first few samples of
the output signal y[k] can be derived by inspection from (A.4):

k u[k] y[k]
−1 0 y−1
0 u[0] ay−1 + bu[0]
1 u[1] a2y−1 + abu[0] + bu[1]
2 u[2] a3y−1 + a2bu[0] + abu[1] + bu[2]

. . . . . . . . .

(A.5)

In general,

y[k] = ak+1y−1 +
k∑

i=0

u[i]bak−i. (A.6)

Owing to system linearity, the overall response y[k] can always be expressed
as a linear superposition of the forced response yf [k] and the free response yo[k],

y[k] = yf [k] + yo[k], (A.7)

where

• The forced response yf [k] is the system response to the input u[k], k ≥ 0, when
initial conditions are all zero: y−1 = . . . y−N = 0 and u−1 = . . . u−M = 0.

• The free response yo[k] is the system’s evolution due to the initial conditions
only, with zero input: u[k] = 0 for all k ≥ 0.

A.1.1 Forced Response

Any causal input u[k] can be represented as a linear superposition of discrete pulses,

u[k] =
+∞∑
i=0

u[i]δ[k − i], k ≥ 0, (A.8)

where

δ[k] =
{

1, k = 0
0, k �= 0 (A.9)
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represents the unit discrete pulse, sometimes referred to as Kronecker delta. From
system linearity, it follows that the forced response to a generic input u[k] can be
expressed in terms of the impulse response h[k], that is, the response to the unit dis-
crete pulse. Expression of the forced response of the system to a generic u[k] is the
superposition of impulse responses,

yf [k] =
k∑

i=0

u[i]h[k − i] =
k∑

i=0

h[i]u[k − i] . (A.10)

Note that system causality implies h[k] = 0 for all k < 0. Operation expressed by
(A.10) is called the discrete convolution between h[k] and u[k].

Example A.1.2: The impulse response of the first-order system examined in
example A.1.1 can be determined by inspection as

h[k] = bak, k ≥ 0. (A.11)

The system forced output is, therefore,

yf [k] =
k∑

i=0

u[i]h[k − i] =
k∑

i=0

u[i]bak−i, (A.12)

which is the second term of the overall response (A.6).

A.1.2 Free Response

Consider the system’s characteristic equation

zN − a1z
N−1 − a2z

N−2 − . . . aN−1z − aN = 0 , z ∈ C, (A.13)

and suppose that it has Nr real roots pi and Nc pairs of complex conjugate roots
rie

±jθ
i ,

pi, i = 1 . . . Nr, (A.14)

rie
±jθ

i , ri > 0, i = 1 . . . Nc. (A.15)

For simplicity, assume that all the roots are simple, that is, their multiplicity as roots
of the characteristic equation is equal to one. By Gauss’ fundamental theorem of
algebra, N = Nr + 2Nc.

When M ≤ N , the system free response is a linear combination of system
modes,

yo[k] =
Nr∑
i=1

Aip
k
i +

Nc∑
i=1

(
Bir

k
i cos kθi + B̃ir

k
i sin kθi

)
, (A.16)
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where the N arbitrary real coefficients Ai, Bi, and B̃i are determined from the initial
conditions by imposing the value of yo[k] in its first N samples,

yo[0] =
N∑

i=1

aiyo[0 − i] +
M∑
i=0

biu[0 − i],

yo[1] =
N∑

i=1

aiyo[1 − i] +
M∑
i=0

biu[1 − i],

. . . = . . .

yo[N − 1] =
N∑

i=1

aiyo[N − 1 − i] +
M∑
i=0

biu[N − 1 − i].

Observe that the right-hand sides of the foregoing equations are all known from the
initial conditions.

When M > N , the free response is a linear combination of the system modes,
plus an initial sequence of finite length,

yo[k] =
M−N−1∑

i=0

qiδ[k − i] +
Nr∑
i=1

Aip
k
i +

Nc∑
i=1

(
Bir

k
i cos kθi + B̃ir

k
i sin kθi

)
,

(A.17)
where coefficients qi are functions—here not shown—of the initial conditions. In
general, there are in this case M arbitrary constants uniquely determined from the
initial conditions,

yo[0] =
N∑

i=1

aiyo[0 − i] +
M∑
i=0

biu[0 − i],

yo[1] =
N∑

i=1

aiyo[1 − i] +
M∑
i=0

biu[1 − i],

. . . = . . .

yo[M − 1] =
N∑

i=1

aiyo[M − 1 − i] +
M∑
i=0

biu[M − 1 − i].

Example A.1.3: The characteristic equation of the first-order system considered
in Example A.1.1 is

z − a = 0, (A.18)

with the corresponding mode ak. Free evolution of the system is therefore of the form

yo[k] = Aak. (A.19)
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By imposing yo[0] = ayo[−1] = ay−1, one has A = ay−1 and therefore

yo[k] = ak+1y−1, (A.20)

which represents the first term in (A.6).

Example A.1.4: Consider the system

y[k] = a1y[k − 1] + b0u[k] + b1u[k − 1] + b2u[k − 2], (A.21)

where M = 2 and N = 1. The free response therefore consists of an initial sequence
of finite length (one sample long, since M − N − 1 = 0), plus a term proportional
to the only system mode a1

k. To check this, consider the first few samples of the free
response,

k u[k] y[k]
−2 u−2 −
−1 u−1 y−1
0 0 a1y−1 + b1u−1 + b2u−2
1 0 a1

(
a1y−1 + b1u−1 + b2u−2

)
+ b2u−1

2 0 a1
2
(
a1y−1 + b1u−1 + b2u−2

)
+ b2a1u−1

. . . . . . . . .

(A.22)

Except for k = 0, a generic output y[k] can be written as

y[k] =
(

a1y−1 + b1u−1 + b2u−2 +
b2

a1
u−1

)
a1

k. (A.23)

For k = 0, on the other hand, the term− b2

a1
u−1 must be subtracted from the foregoing

expression. In general, for k ≥ 0, we have

y[k] = − b2

a1
u−1δ[k] +

(
a1y−1 + b1u−1 + b2u−2 +

b2

a1
u−1

)
a1

k, (A.24)

which has the general form (A.17).

A.1.3 Impulse Response and System Modes

It can be shown that, when M < N , the impulse response itself is a linear superpo-
sition of the system modes,

h[k] =
N

r∑
i=1

Aip
k
i +

N
c∑

i=1

(
Bir

k
i cos kθi + B̃ir

k
i sin kθi

)
, (A.25)

where coefficients Ai, Bi, and B̃i are determined from the ai’s and bi’s.



282 Appendix A DISCRETE-TIME LINEAR SYSTEMS AND THE Z-TRANSFORM

When M ≥ N , on the other hand, an initial sequence of length M − N + 1
appears,

h[k] =
M−N∑
i=0

ciδ[k − i] +
N

r∑
i=1

Aip
k
i +

N
c∑

i=1

(
Bir

k
i cos kθi + B̃ir

k
i sin kθi

)
, (A.26)

where coefficients ci are, again, functions of the ai’s and bi’s.
If N = 0, the system response is a function of the input signal only, and the

impulse response consists of the sole finite length contribution. Systems of this kind
are called finite impulse response systems (FIR). In all the other cases, the system is
designated as infinite impulse response (IIR).

A.1.4 Asymptotic Behavior of the Modes

Every system mode is a sequence of the type pk
i or rk

i sin(kθi + φ). Behavior of each
mode as k → + ∞ therefore essentially depends on |pi| or ri being larger, equal, or
less than one. Under the assumption that all the roots of the characteristic equation
are simple, the following conclusions hold:

• Modes of the type pk
i , associated with the real roots of the characteristic

equation, are convergent to zero for k → + ∞ when |pi| < 1, whereas they
do not converge for |pi| > 1. Condition |pi| = 1 generates a constant mode
when pi = 1 or an oscillatory mode at the Nyquist rate when pi = −1. In
general, an oscillatory character—convergent or not—arises when pi < 0.
Examples of modes associated with real roots of the characteristic equation
are shown in Fig. A.1.

(a)

(b)

p1p2

p1
k

p2
k

1

Complex plane

k

k

p1p2

p1
k

p2
k

1

Complex plane

k

k

Figure A.1 Example of
(a) convergent and (b)
nonconvergent modes
associated with real roots of
the characteristic equation.
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Figure A.2 Example of
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complex roots of the
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• Modes of the type rk
i sin (kθi + φ), associated with pairs of complex conjugate

roots of the characteristic equation, converge to zero for k → + ∞when |ri| <
1, whereas they do not converge when |ri| > 1. Condition ri = 1 originates
a persistent oscillatory mode whose normalized angular frequency coincides
with the pole’s phase. Examples of modes associated with complex roots of the
characteristic equations are shown in Fig. A.2.

For convergent modes, the rate at which they decay to zero depends on how far
the corresponding root is from the unit circle in absolute value. For instance,

|pk
i | = ek ln |pi| = e−

ln 1
|pi |
T kT , (A.27)

suggesting an equivalent time constant τ = T
ln 1

|pi |
, the larger the closer |pi| is to 1.

A.1.5 Further Examples

Example A.1.5: Consider how the system of Example A.1.1 responds to a
discrete-time step of amplitude U ,

u[k] = U, k ≥ 0. (A.28)

Using (A.10), one has

yf [k] =
k∑

i=0

h[i]U = bU

k∑
i=0

ai = bU
1 − ak+1

1 − a
, a �= 1. (A.29)

Hence

yf [k] =
b

1 − a
U − bak+1

1 − a
U, a �= 1. (A.30)

When |a| < 1, the system mode is convergent. In this case, the first term is commonly
denoted as steady-state response, whereas the second term is a transient.
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Example A.1.6: Discrete-Time Integrator. System

y[k] = y[k − 1] + Kiu[k] (A.31)

is a special case of the first-order system considered so far, with a = 1 and b = Ki.
At every sampling step, the output varies by a quantity proportional to the instanta-
neous input.The impulse response of this system is therefore a discrete-time step of
amplitude Ki,

h[k] = Ki, k ≥ 0. (A.32)

Example A.1.7: Discrete-Time Differentiator. System

y[k] = Kd(u[k] − u[k − 1]) (A.33)

provides an output proportional to the input variation in the last sampling step. The
impulse response of such system is

h[k] = Kd(δ[k] − δ[k − 1]). (A.34)

The discrete-time differentiator is therefore an FIR system.

A.2 Z-TRANSFORM

A.2.1 Definition

The Z-transform of a discrete-time signal h[k] is defined as

Z [h] �
+∞∑
k=0

h[k]z−k , z ∈ C. (A.35)

It can be shown that the above-mentioned summation converges to a complex
function H(z), which is holomorphic over a set D of the type

D =
{
z ∈ C : |z| > R, R ∈ R

+}
, (A.36)

that is, on the outside of a circle of radius R ≥ 0 and centered at the origin of the z
complex plane.

Example A.2.1: Z-transform of the causal exponential sequence h[k] = bak, k ≥
0, is

H(z) =
+∞∑
k=0

bakz−k = b

+∞∑
k=0

(az−1)k. (A.37)
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This is the geometric sum of common ratio q = az−1, which converges if and
only if |q| < 1, that is, if and only if |z| > a. Sum of the series is

H(z) =
b

1 − az−1 , |z| > a. (A.38)

In particular, the Z-transform of the discrete-time integrator impulse response
examined in Example A.1.6 is

H(z) =
Ki

1 − z−1 , |z| > 1. (A.39)

A.2.2 Properties

Main properties of the Z-transform are here summarized:

1. Linearity. If h1[k] and h2[k] are two sequences, the Z-transform of a superpo-
sition h[k] = μh1[k] + λh2[k], μ,λ ∈ R, is

H(z) = μH1(z) + λH2(z), z ∈ D1 ∩ D2, (A.40)

where D1 and D2 are the convergence regions of H1(z) and H2(z), respec-
tively.

2. Delay. Given a causal sequence h[k], that is, a sequence that is zero for all
k < 0, the Z-transform of its delayed version h[k − k0] is

Z [h[k − k0]] =
+∞∑
k=0

h[k − k0]z
−k

=
+∞∑

k′=−k0

h[k′]z−(k′+k0)

= z−k0

+∞∑
k′=0

h[k′]z−k′

= z−k0H(z). (A.41)

Operator z−1 therefore represents the basic operation of a one-sample delay.
Delay of a noncausal sequence, on the other hand, yields

Z [h[k − k0]] =
+∞∑
k=0

h[k − k0]z
−k

=
+∞∑

k′=−k0

h[k′]z−(k′+k0)
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= z−k0

−1∑
k′=−k0

h[k′]z−k′
+ z−k0

+∞∑
k′=0

h[k′]z−k′

= z−k0

−1∑
k=−k0

h[k]z−k + z−k0H(z). (A.42)

3. Discrete Convolution. Let h[k] and u[k] be two signals having Z-transforms
H(z) and u(z), converging in regions Dh and Du, respectively. Let y[k] be the
discrete convolution of h[k] and u[k]:

y[k] =
k∑

i=0

h[k − i]u[i]. (A.43)

Then, the Z-transform of y[k] converges into Dy ⊂ Dh ∩ Du to

y(z) = H(z)u(z). (A.44)

4. Initial Value. Initial value h[0] of any causal sequence h[k] is equal to its
Z-transform evaluated at z → + ∞:

lim
z→+∞

H(z) = h[0]. (A.45)

5. Final Value. Let h[k] be a sequence and H(z) its Z-transform. If the poles of

(1 − z−1)H(z) (A.46)

are located inside the unit circle, then

lim
z→1

(1 − z−1)H(z) = lim
k→+∞

h[k]. (A.47)

6. Inverse Z-Transform. Let H(z) be the Z-transform of sequence h[k] and D be
the region of convergence. Then

h[k] =
1

2πj

∮
C
H(z)zk−1dz, (A.48)

where C is a closed integration contour belonging to D and encircling the origin
counterclockwise.
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A.3 THE TRANSFER FUNCTION

From (A.10), it follows that the Z-transform yf (z) of the forced response of the
system to an input u(z) is

yf (z) = H(z)u(z), (A.49)

where the transfer function H(z) is the Z-transform of the impulse response h[k].
H(z) can be expressed in terms of the coefficients of the system difference equation
by applying the Z-transform to the first and the second member of (A.1),

H(z) =
b0 + b1z

−1 + . . . + bM−1z
−M+1 + bMz−M

1 − a1z
−1 − a2z

−2 − . . . − aN−1z
−N+1 − aNz−N

. (A.50)

Assuming the numerator and the denominator of H(z) do not have common
roots, it follows that the nonzero poles of the transfer function coincide with the roots
of the system characteristic equation.

Expanding H(z) in partial fractions and assuming all the poles are simple, and
M < N ,

H(z) =
N

r∑
i=1

Ai

1 − piz
−1 +

N
c∑

i=1

Bi − ri(Bi cos θi − B̃i sin θi)z
−1

1 − 2ri cos θiz
−1 + r2

i z
−2 , (A.51)

where pi are the Nr real poles, whereas rie
±jθ

i are the 2Nc pairs of complex conju-
gate poles. The above-mentioned expansion is the z-domain counterpart of (A.25).

If M ≥ N , a term appears corresponding to an initial sequence of finite dura-
tion,

H(z) =
M−N∑
i=0

ciz
−i +

Nr∑
i=1

Ai

1 − piz
−1 +

Nc∑
i=1

Bi − ri(Bi cos θi − B̃i sin θi)z
−1

1 − 2ri cos θiz
−1 + r2

i z
−2 ,

(A.52)
which can be compared with (A.26).

Example A.3.1: The transfer function of the discrete-time differentiator examined
in Example A.1.7 is

H(z) = Kd(1 − z−1). (A.53)

A.3.1 Stability

Given the relationship between poles of the transfer function and system modes, one
can draw the following conclusions:

• System is asymptotically stable if and only if all the poles are strictly inside the
unit disk,

|pi| < 1, ∀i = 1 . . . Nr,
|ri| < 1, ∀i = 1 . . . Nc.

(A.54)
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• System is unstable when at least one of the poles lies outside the unit disk.

• System is marginally stable if all the poles are inside the unit disk, with the
possible exception of a number of simple poles of magnitude one.

A.3.2 Frequency Response

Let H(z) be the transfer function of an asymptotically stable system, and

u[k] = ejkθ (A.55)

its input. The forced response of the system consists of a transient term converging
to zero for k → + ∞ and a steady-state term yss[k] that can be expressed as

yss[k] = |H(ejθ)|ej(kθ+∠H(ejθ)). (A.56)

The frequency response of a discrete-time system is therefore equal to the sys-
tem transfer function H(z) evaluated on the unit circle z = ejθ.

For marginally stable systems and assuming ejθ does not correspond to one of
the system poles, the forced response still contains a term of the type (A.56), whereas
the transient term remains limited but nonconvergent.

A.4 STATE-SPACE REPRESENTATION

As with continuous-time systems, a state-space description for discrete-time systems
can be developed both in the time domain and in the frequency domain. Equations of
a linear, time-invariant and causal discrete-time system in state-space form are

x[k + 1] = Ax[k] + Bu[k]

y[k] = Cx[k] + Fu[k]
, (A.57)

where x represents the state vector, whereas u and y are the system input and output,
respectively. Matrices A, B, and C are of type R

n×n, R
n×1, and R

1×n, respec-
tively, where n is the number of state variables. On the other hand, for single-input,
single-output systems such as those considered in this appendix, F is a scalar.

The overall system response is uniquely determined for k ≥ 0 once the system
initial state x[0] and its input u[k], k ≥ 0 are assigned,

k u[k] x[k + 1] y[k]

0 u[0] Ax[0] + Bu[0] Cx[0] + Fu[0]
1 u[1] A2x[0] + ABu[0] + Bu[1] CAx[0] + CBu[0] + Fu[1]
2 u[2] A3x[0] + A2Bu[0] + ABu[1] + Bu[2] CA2x[0] + CABu[0] + CBu[1] + Fu[2]

. . . . . . . . . . . . .
(A.58)
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In general, for k ≥ 0,

x[k + 1] = A(k+1)x[0] +
k∑

i=0

Ak−iBu[i],

y[k] = CAkx[0] +
k−1∑
i=0

CAk−i−1Bu[i] + Fu[k].

(A.59)

The latter expression makes it possible to easily distinguish between the system
free response yo[k] and the forced response yf [k],

yo[k] = CAkx[0],

yf [k] =
k−1∑
i=0

CAk−i−1Bu[i] + Fu[k].
(A.60)

Observe that the forced response can be written in the form

yf [k] =
k∑

i=0

h[k − i]u[i], (A.61)

with

h[k] =
{

F, k = 0,

CAk−1B, k ≥ 1.
(A.62)

Signal h[k] is therefore the system impulse response, and the above-mentioned rela-
tionships link h[k] to the system state-space matrices.

In the z-domain, (A.57) becomes

zx(z) − zx[0] = Ax(z) + Bu(z),

y(z) = Cx(z) + Fu(z),
(A.63)

and therefore

y(z) = zC (zI − A)−1 x[0] +
(
C (zI − A)−1 B + F

)
u(z) . (A.64)

Letting x[0] = 0 leads to an expression for the system transfer function as

H(z) �
yf (z)
u(z)

= C (zI − A)−1 B + F . (A.65)





A P P E N D I X B
FIXED-POINT ARITHMETIC AND
HDL CODING

This appendix presents an overview of the representation of numbers in a finite pre-
cision arithmetic environment. The discussion then focuses on the binary two’s com-
plement representations and coding of fixed-point arithmetic in hardware description
languages (HDLs)—VHDL and Verilog-HDL.

B.1 ROUNDING OPERATION AND ROUND-OFF
ERROR

In a finite precision computing system, a limited number of digits are available to
represent any given signal. Representable numbers, that is, those numbers having an
exact representation in the considered arithmetic system, necessarily form a discrete
subset Ĩ of a continuous subset I of the real axis.

It is first necessary to clarify how a given c ∈ I can be approximated by a
suitable element c̃ ∈ Ĩ. To this end, recall that for a given integer b strictly greater
than one, every nonzero real quantity c can be uniquely written as

c = ±Sb(c) × bEb(c) , (B.1)

where

• b is called the base or radix of the representation.

• Eb(c) is an integer called the exponent of c, which defines its order of magni-
tude.

• Sb(c) is a real number such that 1 ≤ Sb(c) < b. It is called the significand of c.

For instance,

3
8

= 3.75 × 10−1 (Radix-10 representation (b = 10)),

= 3 × 8−1 (Radix-8 representation (b = 8)),

= 1.5 × 2−2 (Radix-2 representation (b = 2)).

(B.2)

Digital Control of High-Frequency Switched-Mode Power Converters, First Edition.
Luca Corradini, Dragan Maksimović, Paolo Mattavelli, and Regan Zane.
© 2015 The Institute of Electrical and Electronics Engineers, Inc. Published 2015 by John Wiley & Sons, Inc.
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Representation (B.1), known as exponential notation, suggests that, in order to
define c̃, one can truncate or round-off Sb(c) to a given number of digits. Consider,
for instance, number π = 3.1415926535 . . .. In a radix-10 notation, E10(π) = 0 and
S10(π) = π. Consider then successive approximations of π in which the significand
is rounded to its first n decimal digits,

π̃ = 3 × 100 (1-digit approx.),

π̃ = 3.1 × 100 (2-digits approx.),

π̃ = 3.14 × 100 (3-digits approx.),

π̃ = 3.141 × 100 (4-digits approx.),

π̃ = 3.1416 × 100 (5-digits approx.),

π̃ = 3.14159 × 100 (6-digits approx.),

. . .

(B.3)

The operation of rounding c to its first n significant digits is denoted as

c̃ = Qn [c] , (B.4)

the radix b being usually clear from the context. The notation can be simplified by
eliminating the radix point “.” and adjusting the exponent accordingly,

Q1 [π] = 3 × 100 (1-digit approx.),

Q2 [π] = 31 × 10−1 (2-digits approx.),

Q3 [π] = 314 × 10−2 (3-digits approx.),

Q4 [π] = 3141 × 10−3 (4-digits approx.),

Q5 [π] = 31416 × 10−4 (5-digits approx.),

Q6 [π] = 314159 × 10−5 (6-digits approx.)

. . .

(B.5)

From these preliminary considerations, in an n-digit, radix-b finite precision
arithmetic system the representable numbers are of the form

c̃ = ±w × bq , (B.6)

where

• The radix or base b is an integer equal or greater than 2.

• The unsigned significand w is a nonnegative integer, which is expressed, in
positional notation, by an n-digit base-b word.
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w =
(
dn−1dn−2 . . . d1d0

)
b

�
n∑

i=0

di × bi, di ∈ {0, 1, . . . b − 1}. (B.7)

• The exponent q is an integer that, depending on the arithmetic system, may or
may not have an explicit encoding.

Absolute and relative round-off errors between c and its approximation Qn [c]
are denoted with

dnc � Qn [c] − c (Absolute round-off error),

δnc � dnc

c
=

Qn [c] − c

c
(Relative round-off error).

(B.8)

B.2 FLOATING-POINT VERSUS FIXED-POINT
ARITHMETIC SYSTEMS

Encoding a given number in a finite precision system involves the representation of
(i) the rounded significand and (ii) the exponent q. Signed numbers can be treated by
devoting one additional bit to represent the sign.

The arithmetic formats where the exponent q is explicitly encoded are known
as floating-point arithmetic systems. Consider, for instance, a radix-10 system using
two digits for the significand and one digit for a signed exponent. Positive repre-
sentable quantities would range from 0110 × 10−9 to 9910 × 109, covering 20 decades
with a relative round-off error never larger than ≈ 4.7%. The single main advantage
of floating-point arithmetic, therefore, is the capability to span several orders of mag-
nitude while maintaining a limited relative round-off error throughout the represented
range. Standard IEEE Std 754™-2008 [176] defines a number of floating-point for-
mats. For instance, in the IEEE binary32 format, 32 total bits are available, 1 bit
encoding the sign, 8 bits encoding the exponent, and the remaining 23 bits being
reserved for the significand. The represented range spans approximately 83 decades.

Implementation of floating-point systems involves a significant computational
overhead to carry out even the fundamental arithmetic operations, because of the
need to decode and encode operands prior and after every manipulation. Further-
more, normalization of the represented quantities is required to make representations
unique: In a three-digit system, for instance, c̃ = 8.2 can be represented either as
08210 × 10−1 or as 82010 × 10−2. The representation can be made unique by requir-
ing that 100 ≤ w < 1000. More generally, in an n-digit radix-b system, one requires
that bn−1 ≤ w < bn.

Because of its complexity, floating-point arithmetic is nowadays implemented
in most microprocessors and high-end digital signal processors (DSPs) in dedicated
floating-point units (FPUs). On the other hand, floating-point arithmetic is typically
not supported by low-cost DSPs and microcontrollers, where floating point can be
software-emulated when absolutely needed. In general, owing to cost and complexity
constraints, floating-point arithmetic is avoided in many embedded system applica-
tions, including digital controllers considered in this book.
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The formats where the exponent is not explicitly encoded are called fixed-point
arithmetic systems. Any given quantity is represented solely by a signed signifi-
cand, whereas the exponent remains fixed once and for all and therefore does not
require encoding. Manipulation of fixed-point quantities can be carried out much
more rapidly and efficiently. In fact, it is easy to realize that arithmetic operations
in a fixed-point environment are essentially arithmetic operations between integers.
Furthermore, representations are inherently unique, with the possible exception of
the zero, which may or may not have a unique encoding depending on the format
used. The drawback of such simplicity is a much larger relative error with respect to a
floating-point encoding using the same number of bits — or, equivalently, the need for
longer word lengths to achieve the same precision. As a comparison with the previous
example, suppose two integer digits are available to represent quantities over a scale
of 102. Positive representable numbers therefore range from 0110 × 102 to 9910 × 102,
that is, two decades. The worst-case relative round-off error amounts to 50%.

B.3 BINARY TWO’S COMPLEMENT (B2C)
FIXED-POINT REPRESENTATION

In this book, a radix-2 fixed-point system is considered in which a signed significand
is encoded in two’s complement notation. The binary two’s complement (B2C) repre-
sentation is a base-2 positional system capable of encoding both positive and negative
numbers, with a unique representation of the zero. It has a number of appealing fea-
tures that make it easily the most commonly adopted integer arithmetic system in
today’s microcontrollers, DSPs, and microprocessors.

Representable numbers are of the form

x = w × 2q , (B.9)

where the signed significand w is an n-bit binary word w encoded in B2C,

w =
(
bn−1bn−2 . . . b1b0

)
2

� −bn−1 × 2n−1 +
n−2∑
i=0

bi × 2i, bi ∈ {0, 1}. (B.10)

The exponent q is fixed once and for all and therefore does not have an explicit hard-
ware encoding.

Bits bn−1 and b0 of the significand are called most significant bit (MSB) and
least significant bit (LSB) of the representation, respectively. The most significant bit
bn−1 is also called the sign bit, as it is equal to 1 if and only if w < 0 and equal to 0
otherwise.

The range spanned by an n-bit B2C word is

−2n−1︸ ︷︷ ︸
wmin

≤ w ≤ 2n−1 − 1︸ ︷︷ ︸
wmax

,
(B.11)
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0002

0012

0102

0112

1002

1012

1102

1112
010

110

210

310

−410

−310

−210

−110

wmaxwmin

Figure B.1 Circular representation of a
3-bit B2C arithmetic system.

where wmax and wmin represent the most positive and the most negative representable
numbers. For instance, the range of integers represented by a 3-bit B2C word goes
from −4 to +3. As shown in Fig. B.1, B2C can be thought of as a circular representa-
tion: if binary one is added to the most positive number—performing the operation as
if dealing with a plain base-2 representation—the most negative number is obtained.

�

�

�

�
Inset B.1 – B2C Round-off Using Matlab®

A simple Matlab® function that implements the n-digit B2C round-off operation
Qn [x] of a given quantity x is given in this inset:

function [wk,dx] = Qn(x,n)

x1 = x;

neg = (x<0);
x = abs(x);

E = floor(log2(x));
F = 2^(log2(x)-E);
q = E-(n-2);
wd = round(F*2^(n-2));
if (wd==1)

wd = round(F*2^(n-3));
q = q+1;

end;

if (neg)
xq = -wd*2^q;
s = ['1',dec2bin(-wd+2^(n-1),n-1)];
wd = -wd;

else
xq = wd*2^q;
s = ['0',dec2bin(wd,n-1)];

end;
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wk.xq = xq;
wk.w = wd;
wk.q = q;
wk.n = n;
wk.s = s;
dx = xq-x1;

return;

The above-mentioned function accepts quantity x to be quantized and the target word
length n. Its outputs wk and dx are

• wk: A structure encoding the B2C quantity. Its fields are as follows:

◦ wk.xq: Rounded-off quantity Qn [x].

◦ wk.w: Significand w of the B2C representation of x.

◦ wk.q:Scale q of the B2C representation of x.

◦ wk.n: Number of bits.

◦ wk.s:String representation of the n-bit B2C word w.

• dx: Absolute round-off error dnx.

For instance, [wk,dx]=Qn(pi,5) produces

wk =

xq: 3.2500
w: 13
q: -2
n: 5
s: '01101'

dx =

0.1084

or
Q5 [π] = 011012 × 2−2 = 1310 × 2−2 = 3.2510. (B.12)

B.4 SIGNAL NOTATION

Referring to (B.9), one can interpret x as a generic signal and word w as representing
x over a scale 2q . A notation is now introduced that is extensively used in Chapter 6
and that makes the relationship between x and w more explicit, without the need to
rewrite (B.9) every time. Define

[x]nq � w , (B.13)
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w3 w2 w1 w0w4

23242526−27Bit weight:

Word scale q = 3

B2C word w = [x]53 :

Word length n = 5

Figure B.2 Signal notation of a B2C word w = [x]53.

so that the relationship between x and w becomes

x = [x]nq × 2q. (B.14)

In other words, [x]nq is the unique n-bit B2C word that represents signal x if its least
significant bit is given a weight equal to 2q. In a sense, this notation puts emphasis
on the signal x represented by a B2C word rather than on the word itself. As an
example, Fig. B.2 shows a pictorial representation of the signal notation for a B2C
word w = [x]53 representing a signal x with 5 bits and over a scale 23.

B.5 MANIPULATION OF B2C QUANTITIES AND HDL
EXAMPLES

This section summarizes the most common arithmetic and bitwise operations on B2C
words, along with the corresponding coding in VHDL or Verilog [173, 174, 177, 178].

As far as VHDL is concerned, data types and packages standardized in the
IEEE Standard VHDL Synthesis Packages document [172] are employed. The stan-
dard provides a description of data types, arithmetic, and logic operators, which are
likely supported by any synthesis tool. B2C quantities are represented by means
of the signed data type as defined in the NUMERIC_STD package, which in turn
is built upon the IEEE-defined package STD_LOGIC_1164 [171]. Hence, the fol-
lowing library configuration preamble is assumed for all VHDL examples in this
book:

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.NUMERIC_STD.ALL;

An n-bit word [x]nq representing signal x can then be defined as

signal x : signed(n-1 downto 0); -- [n,q]

Observe that the scale q of [x]nq is not encoded anywhere and remains implicit, as a
fixed-point arithmetic representation is used. For such reason and for improved code
readability, the comment --[n,q] is included, which reports both the size and the
scale of x.

The reference documentation for the Verilog language definitions and synthe-
sizable constructs is in [175, 178]. For manipulating B2C words, the Verilog data type
signed is employed, and words [x]nq introduced earlier can be defined as
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wire signed [n-1:0] x; // [n,q]

All binary and arithmetic operations described in this section implement,
in hardware, purely combinational functions. Therefore, they are coded as either
concurrent statements (if VHDL is used) or continuous assignments (in Verilog
examples). Recall that the basic syntax for a VHDL concurrent statement makes
use of the <= operator,

y <= x; -- Concurrent statement

where x and y are two VHDL signals. A Verilog continuous assignment, on the
other hand, has the basic syntax

assign y = x; // Continuous assignment

where x and y are declared as wire signed nets.

B.5.1 Sign Extension

When extending the number of binary digits from n to n + k, k replicas of the sign
bit are to be written in the most significant portion of the word. The reason why this
works is that the contribution of the sign bit can always be written as

−bn−1 × 2n−1 = −bn−1 × 2n + bn−1 × 2n−1, (B.15)

which allows one to arbitrarily replicate the sign without altering the represented
value.

For instance, if
w = [x]5q = 100102 = −1410,

r = [y]5q = 001112 = 710

(B.16)

are two 5-bit B2C words, their extensions to 5 + 3 = 8 bits are

w′ = [x]8q = 111100102 = −1410,

r′ = [y]8q = 000001112 = 710,
(B.17)

as one can easily verify.
In signal notation, a 1-bit sign extension is simply denoted as

[x]n+1
q ← [x]nq , (B.18)

and, more generally,
[x]n+k

q ← [x]nq , (k ≥ 0) (B.19)

for a k-bit sign extension. Observe that sign extension does not modify the signal
represented by the word.

As an example, Fig. B.3 shows a pictorial representation of [x]63 ← [x]53.



B.5 MANIPULATION OF B2C QUANTITIES AND HDL EXAMPLES 299

w3 w2 w1 w0w4

23242526−27Bit weight:

[x]53 :

w3 w2 w1 w0w4w4

2324252627−28

[x]63 ← [x]53 :

Bit weight: Figure B.3 Sign extension
[x]63 ← [x]53.

B.5.2 Alignment

Two B2C words [x]nq and [y]pl are aligned if q = l, that is, if they express signals x
and y over the same scale. Alignment is often necessary before arithmetic operations
such as addition, subtraction, or comparisons. For instance, if

x = 010012 × 22 = 3610,

y = 102 × 20 = −210

(B.20)

are two 5-bit and 2-bit signals represented in different scales, their aligned represen-
tation is

x = 01001002 × 20 = 3610,

y = 102 × 20 = −210,
(B.21)

where the represented values are obviously unaltered, but the significand of x is
now represented on the same scale as y’s and, consequently, on a larger number of
bits.Therefore, alignment consists of an LSB extension of the word represented on
the largest scale.

The 2-bit LSB extension of [x]52 = 010012 to [x]70 = 01001002 is indicated, in
signal notation, as

[x]70 ← [x]52 . (B.22)

In general, given [x]nq , one can increase the word length and correspondingly
decrease the scale without altering the represented signal,

[x]n+k
q−k ← [x]nq , (k ≥ 0), (B.23)

an operation that corresponds to the LSB extension mentioned earlier.
On the basis of such observation, if [x]nq and [y]pl are two words of different

lengths and different weights, with q > l, alignment of [x]nq to [y]pl is achieved by
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w3 w2 w1 w0w4

23242526−27Bit weight:

[x]53 :

w3 w2 w1 w0w4 0

23242526−27 22

[x]62 ← [x]53 :

Bit weight: Figure B.4 One-bit LSB
extension [x]62 ← [x]53.

adding and subtracting (q − l) from n and q, respectively,

[x]n+q−l
l ← [x]nq , (q > l). (B.24)

Figure B.4 shows a pictorial representation of a [x]62 ← [x]53 LSB extension.

�

�

�

�
Inset B.2 – VHDL Sign Extension and Alignment

Sign extension of a word [x]nq makes use of the VHDL concatenation operator &.Let

signal x : signed(n-1 downto 0);
signal x_ext : signed(n downto 0);

A 1-bit sign extension of x is coded as

x_ext <= x(n-1)&x;

Similarly, for alignment, a 1-bit LSB extension of x is coded as

x_ext <= x&'0';

�

�

�

�
Inset B.3 – Verilog Sign Extension and Alignment

In a similar manner, sign extension of an n-bit wire net x to an (n + 1)-bit wire net
x_ext, both declared as signed, is accomplished in Verilog using the concatena-
tion operator {}:

wire signed [n-1:0] x;
wire signed [n:0] x_ext;
assign x_ext = {x[n-1],x};

For alignment, the 1-bit LSB extension of x is coded as

wire signed [n-1:0] x;
wire signed [n:0] x_ext;
assign x_ext = {x,1'b0};
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Care must be taken, in general, when concatenating signed quantities, as concate-
nate results are unsigned, regardless of the operands [178]. The above-mentioned
statements work correctly because no sign extension of {x[n-1],x} or {x,1'b0}
is required during the assignment, but just an implicit—and irrelevant—typecasting
occurs. If desired, however, the typecasting operator $signed can be explicitly
invoked. For instance, the above-mentioned 1-bit LSB extension would become

assign x_ext = $signed({x,1'b0});

B.5.3 Sign Reversal

In an n-bit B2C system, every number has its additive inverse except for the most
negative number. Therefore, an (n + 1)-bit word is required when changing the sign
of an n-bit B2C quantity.

Operatively, the sign of an n-bit word w can be changed by first extending its
representation to n + 1 bits, then bit-wise negating all the bits, and finally adding one.
For instance, if w = 01102 = 610, then −610 is calculated as

w = 01102 (original word)

→ 001102 (sign extension)

→ 110012 (bit-wise negation)

→ 110102 = −610 (add 000012). (B.25)

In signal notation, sign reversal is indicated as

[−x]n+1
q ← − [x]nq . (B.26)

�

�

�

�
Inset B.4 – VHDL Sign Reversal

Define

signal x : signed(n-1 downto 0); -- [n,q]
signal x_ext : signed(n downto 0); -- [n+1,q]
signal z : signed(n downto 0); -- [n+1,q]

VHDL sign reversal of x is accomplished by first sign-extending x, then employing
the “-” unary operator defined in package NUMERIC_STD:

x_ext <= x(n-1)&x;
z <= -x_ext;
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w3 w2 w1 w0w4

23242526−27Bit weight:

[x]53 :

242526−27

[y]44 ← [x]53 :

Bit weight:

w3 w2 w1w4

Figure B.5 One-bit LSB truncation
[y]44 ← [x]53.
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Inset B.5 – Verilog Sign Reversal

Verilog coding of sign reversal of an n-bit signal x is accomplished by first
sign-extending x, then employing the “-” unary operator:

wire signed [n-1:0] x; // [n,q]
wire signed [n:0] x_ext; // [n+1,q]
wire signed [n:0] z; // [n+1,q]
assign x_ext = {x[n-1],x};
assign z = -x_ext;

where z is a (n + 1)-bit signal.

B.5.4 LSB and MSB Truncation

Truncation—that is, removal—one or more LSBs or MSBs from an n-bit B2C word
destroys, in general, the represented number. This operation is nonetheless discussed
as it is frequently employed during bit manipulation. In signal notation, a 1-bit LSB
truncation is denoted as

[y]n−1
q+1 ← [x]nq . (B.27)

In general, y = x if and only if the least significant bit of [x]nq is zero, that is, if and
only if x is a multiple of 2q. Otherwise, y = x − 2q.

More generally, truncation of the first k least significant bits of a word [x]nq is
denoted as

[y]n−k
q+k ← [x]nq , (0 ≤ k ≤ n − 1) , (B.28)

and y = x if and only if x is a multiple of 2q+k. Figure B.5 illustrates a pictorial
representation of a 1-bit LSB truncation [y]44 ← [x]53.

A 1-bit MSB truncation, on the other hand, is denoted as

[y]n−1
q ← [x]nq , (B.29)

and, more generally for a k-bit MSB truncation, one has

[y]n−k
q ← [x]nq , (0 ≤ k ≤ n − 1) . (B.30)
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w3 w2 w1 w0w4

23242526−27Bit weight:

[x]53 :

2425−26

[y]43 ← [x]53 :

Bit weight:

w3 w2 w3 w0

23 Figure B.6 One-bit MSB truncation
[y]43 ← [x]53.

Figure B.6 illustrates a pictorial representation of a 1-bit MSB truncation [y]43 ← [x]53.
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Inset B.6 – VHDL Truncation of a B2C Quantity

Truncation of a signal x is simply coded, in VHDL, by assigning the proper por-
tion of x to a signal of smaller length. Focusing, for definiteness, on a 1-bit LSB
truncation, define x and y as

signal x : signed(n-1 downto 0); -- [n,q]
signal y : signed(n-2 downto 0); -- [n-1,q+1]

Truncation of x is then coded as

y <= x(n-1 downto 1);
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Inset B.7 – Verilog Truncation of a B2C Quantity

The Verilog construct for a 1-bit LSB truncation is by all means analogous to the
VHDL one:

wire signed [n-1:0] x; // [n,q]
wire signed [n-2:0] y; // [n-1,q+1]
assign y = x[n-1:1];

where y is a (n − 1)-bit Verilog signal. Note that, as with the concatenation
operator, part-select results are unsigned, regardless of the operands even if
the part-select specifies the entire vector [175]. In other words, x[n-1:1]
on the assignment right-hand side is of unsigned type. Nonetheless, the
above-mentioned example works correctly, as no sign extension of x[n-1:1] is
required during the assignment and just a conversion back to signed occurs. If
desired, however, the $signed typecasting operator can be explicitly used:

assign y = $signed(x[n-1:1]);
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B.5.5 Addition and Subtraction

Representing the sum of two n-bit B2C words requires an (n + 1)-bit word. For
instance, in a 3-bit B2C system in which numbers range from −410 to +310, possible
sums of its elements range between −810 and +610.

The simplest way to handle the need for an extended range is a preliminary sign
extension of the addends. Addition between two B2C words is then accomplished
with the same rules of plain base-2 addition. For instance, let

w = [x]3q = 0112 = 310,

r = [y]3q = 1112 = −110

(B.31)

be the two 3-bit addends. Their sum is then accomplished over 4 bits as

00112 +

11112 =

00102

i.e.,

310 +

−110 =

210.

(B.32)

In a similar manner, subtraction of two n-bit B2C quantities can be exactly
represented over n + 1 bits. Difference between words w and r defined earlier can be
accomplished as the B2C sum of w with −r. The latter is obtained, according to the
discussion in the previous section, with a preliminary sign extension of r, followed
by its bit-wise negation and a unit increment,

−r = 00002 + 00012 = 00012. (B.33)

Hence, w − r becomes

00112 +

00002 +

00012 =

01002

i.e.,

310 +

010 +

110 =

410.

(B.34)

In signal notation, addition or subtraction between two n-bit words and storage
into a (n + 1)-bit word is denoted with

[x ± y]n+1
q ← [x]nq ± [y]nq . (B.35)

Observe that the operation only makes sense as long as the two addends are aligned.
If not, a preliminary alignment is required.

When the two addends are aligned but have different lengths n and p, their sum
or difference can always be correctly represented by a (max(n, p) + 1)-bit word,

[x ± y]max(n,p)+1
q ← [x]nq ± [y]pq . (B.36)
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Inset B.8 – VHDL Addition of B2C Quantities

Addition of two aligned words [x]nq and [y]pq can be VHDL-coded as follows. Con-
sider the signal declarations

signal x : signed(n-1 downto 0); -- [n,q]
signal y : signed(p-1 downto 0); -- [p,q]
signal z : signed(max(n,p) downto 0); -- [max(n,p)+1,q]

In the above-mentioned code, it is assumed that a function max is defined that
returns the largest of its two arguments. Addition between x and y can be accom-
plished by first sign extending both signals, then using the + operator defined on
signed data types to store the result into z:

z <= (x(n-1)&x)+(y(p-1)&y);

Note that operator +, defined in the NUMERIC_STD package, evaluates the result to a
vector whose length is the largest between the lengths of the operands [172]. There-
fore, both sides of the foregoing concurrent statement have the same length.

Subtraction of two B2C quantities is accomplished with the “-” operator, which
automatically implements a signed difference as discussed earlier. All considerations
and constructs examined earlier apply with no other modifications.
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Inset B.9 – Verilog Addition of B2C Quantities

Addition of two aligned words [x]nq and [y]pq can be Verilog-coded as follows. Con-
sider the signal declarations

wire signed [n-1:0] x; // [n,q]
wire signed [p-1:0] y; // [p,q]
wire signed [max(n,p):0] z; // [max(n+p)+1,q]

As in VHDL, addition between x and y can be accomplished by first sign-extending
both signals, then using the + operator defined on signed data types to store the
result into z:

wire signed [n:0] x_ext = {x[n-1],x};
wire signed [p:0] y_ext = {y[p-1],y};
assign z = x_ext + y_ext;

Subtraction is accomplished in a similar manner with the use of Verilog operator “-”.

B.5.6 Multiplication

The product of an n-bit B2C word with a p-bit B2C word can be exactly represented
by a (n + p)-bit B2C word. In particular, multiplication of two n-bit words requires
a (2n)-bit word to store the product. For instance, in a 3-bit B2C system, possible
products between its elements range between −1210 and +1610.
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[x + y]max (n,p)+1
q

[y]pq

[x]nq [xy]n+p
q+l

[y]pl

[x]nq
+ ×

[xy]n+p
q+l ← [x]nq × [y]pl[x + y]max (n,p)+1

q ← [x]nq + [y]pq

Figure B.7 Block diagram symbols for addition and multiplication.

In signal notation, multiplication between two words and storage into an output
word is denoted as

[xy]n+p
q+l ← [x]nq × [y]pl . (B.37)

Block diagram symbols for addition and multiplication are depicted in Fig. B.7. It
should be noted that multiplication changes the scale of the represented quantity.
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Inset B.10 – VHDL Multiplication of B2C Quantities

VHDL multiplication of two B2C quantities is simply accomplished via the * oper-
ator defined for signed data types. Let

signal x : signed(n-1 downto 0); -- [n,q]
signal y : signed(p-1 downto 0); -- [p,l]
signal z : signed(n+p-1 downto 0); -- [n+p,q+l]

be signals representing B2C words of lengths n, p, and n + p, respectively. B2C
multiplication between x and y is simply coded as

z <= x*y;
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Inset B.11 – Verilog Multiplication of B2C Quantities

Verilog multiplication of two B2C quantities is simply accomplished via the * oper-
ator defined for signed data types. Let

wire signed [n-1:0] x; // [n,q]
wire signed [p-1:0] y; // [p,l]
wire signed [n+p-1:0] z; // [n+p,q+l]

be signals representing B2C words of lengths n, p, and n + p, respectively. B2C
multiplication between x and y is coded as

assign z = x*y;
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B.5.7 Overflow Detection and Saturated Arithmetic

If result (B.34) is to be stored in a 3-bit word, an overflow would occur, as 410 is not
representable in a 3-bit B2C system. Simply dropping the most significant bit from
the (3 + 1)-bit result would yield 1002 = −410.

Given an (n + 1)-bit B2C word w = [x]n+1
q , it is therefore of interest to deter-

mine whether x could be represented in n bits, a check often referred to as overflow
detection. Overflow detection can be accomplished in a variety of ways. If

w = [x]n+1
q = (wn . . . w0)2, (B.38)

is a generic (n + 1)-bit B2C word, the range overflow occurs if and only if the two
most significant bits of w differ,

OV = wn XOR wn−1. (B.39)

Whenever OV = 0, truncation of the MSB does not alter the represented quantity. It
can be verified that the above-mentioned criterion would correctly detect an overflow
condition in the case of sum (B.34).

The above-mentioned result can be generalized to an (n + l)-bit word

w = [x]n+l
q = (wn+l−1 . . . w0)2

. (B.40)

Word w can be exactly stored in an n-bit word if and only the l + 1 most significant
bits of w are equal,

OV = NOT
(
wn+l−1 = wn+l−2 = . . . = wn−1

)
. (B.41)

The action to be undertaken when an overflow occurs depends on the system
in which the B2C arithmetic is implemented. A frequent provision saturates an over-
flowed result to the most positive or the most negative representable number. In such
saturated arithmetic, the result of (B.34) would be 0112 = 310, the most positive rep-
resentable number in a 3-bit B2C system.

In general, a saturated assignment involving truncation of l MSBs is indicated
as

[y]nq ⇐ [x]n+l
q , (B.42)

The above-mentioned assignment is to be interpreted as follows: whenever the result
of the operation on the right-hand side of the assignment overflows, the left-hand
side is set to the most positive or the most negative values representable on n bits,
depending on the overflow direction. If no overflow occurs, a simple MSB truncation
of the result is accomplished. For instance, a saturated sign reversal is denoted as

[z]nq ⇐ − [x]nq , (B.43)
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[z]mq

[y]pq

[x]nq [z]mq+l

[y]pl

[x]nq
+ ×

[z]mq+l ⇐ [x]nq × [y]pl

m < n + p

[z]mq ⇐ [x]nq + [y]pq

m ≤ max(n, p)

Figure B.8 Block diagram symbols for
saturated addition and saturated
multiplication.

whereas signal notation for saturated addition/subtraction and multiplication
becomes

[z]mq ⇐ [x]nq ± [y]pq (m ≤ max(n, p)) (B.44)

and
[z]mq+l ⇐ [x]nq × [y]pl (m < n + p). (B.45)

Block diagram symbols used for saturated addition and multiplication are shown in
Fig. B.8.

�

�

�

�
Inset B.12 – VHDL Saturated Addition and Multiplication

A combinational saturated adder can be VHDL-coded as follows. Consider the
entity declaration first:

entity saturated_adder is
generic (

n, p, m : integer -- m <= max(n,p)+1
);

port (
x : in signed(n-1 downto 0); -- [n,q]
y : in signed(p-1 downto 0); -- [p,q]
z : out signed(m-1 downto 0); -- [m,q]
OV : out std_logic;
op : in std_logic
);

end saturated_adder;

Entity saturated_adder operates on two inputs x and y, n-bit and p-bit
long, respectively, and outputs their saturated sum as a m-bit word z, with
m ≤ max (n, p) + 1. Input flag op specifies whether the sum is actually an addition
(if op='1'), or a subtraction (if op='0'). Output flag OV is asserted in the presence
of a range overflow with respect to the target word length m.
A possible implementation of the saturated adder is as follows:

1 architecture saturated_adder_arch of saturated_adder is
2
3 function MAX(LEFT, RIGHT: INTEGER) return INTEGER is
4 begin
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5 if LEFT > RIGHT then return LEFT;
6 else return RIGHT;
7 end if;
8 end;
9

10 signal zx : signed(max(n,p) downto 0);
11 signal OVi : std_logic;
12 constant wmax : signed(m-2 downto 0) := (others=>'1');
13 constant wmin : signed(m-2 downto 0) := (others=>'0');
14
15 begin
16
17 zx <= (x(n-1)&x) + (y(p-1)&y) when op='1' else
18 (x(n-1)&x) - (y(p-1)&y);
19
20 overflow_detect : process(zx)
21 variable temp : std_logic;
22 begin
23 temp := '0';
24 for I in m to max(n,p) loop
25 if ((zx(I) xor zx(m-1))='1') then
26 temp := '1';
27 end if;
28 end loop;
29 OVi <= temp;
30 end process;
31
32 z <= ('0'&wmax) when OVi='1' AND zx(max(n,p))='0' else
33 ('1'&wmin) when OVi='1' AND zx(max(n,p))='1' else
34 zx(m-1 downto 0);
35
36 OV <=OVi;
37
38 end saturated_adder_arch;

In the preceding example, an overflow check is accomplished by process
overflow_detect defined in line 20.
Entity declaration for a combinational saturated multiplier is

entity saturated_multiplier is
generic (

n, p, m : integer -- m<=n+p
);

port (
x : in signed(n-1 downto 0); -- [n,q]
y : in signed(p-1 downto 0); -- [p,l]
z : out signed(m-1 downto 0); -- [m,q+l]
OV : out std_logic
);

end saturated_multiplier;

In this case, the word length of the saturated product is m ≤ n + p. An implementa-
tion example of the foregoing entity is
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1 architecture saturated_multiplier_arch of saturated_multiplier is
2
3 signal zx : signed(n+p-1 downto 0);
4 signal OVi : std_logic;
5 constant wmax : signed(m-2 downto 0) := (others=>'1');
6 constant wmin : signed(m-2 downto 0) := (others=>'0');
7
8 begin
9

10 zx <= x*y;
11
12 overflow_detect : process(zx)
13 variable temp : std_logic;
14 begin
15 temp := '0';
16 for I in m to n+p-1 loop
17 if ((zx(I) xor zx(m-1))='1') then
18 temp := '1';
19 end if;
20 end loop;
21 OVi <= temp;
22 end process;
23
24 z <= ('0'&wmax) when OVi='1' AND zx(n+p-1)='0' else
25 ('1'&wmin) when OVi='1' AND zx(n+p-1)='1' else
26 zx(m-1 downto 0);
27
28 OV <=OVi;
29
30 end saturated_multiplier_arch;
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Inset B.13 – Verilog Saturated Addition and Multiplication

Following the previous VHDL example, a combinational saturated adder can be
Verilog-coded as follows:

1 module saturated_adder(x,y,z,OV,op);
2
3 function integer max;
4 input integer left, right;
5 if (left>right)
6 max = left;
7 else
8 max = right;
9 endfunction

10
11 parameter n;
12 parameter p;
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13 parameter m; // Assuming m <= max(n,p)+1
14 parameter mx = max(n,p)+1;
15
16 input signed [n-1:0] x;
17 input signed [p-1:0] y;
18 output reg signed [m-1:0] z;
19 input op;
20
21 output reg OV;
22
23 wire signed [n:0] xx = {x[n-1],x};
24 wire signed [p:0] yx = {y[p-1],y};
25 wire signed [mx-1:0] zx;
26
27 assign zx = (op==1'b1) ? xx+yx : xx-yx;
28
29 reg temp;
30 integer I;
31 always @(zx)
32 begin
33 temp = 1'b0;
34 for (I=m;I<=mx-1;I=I+1)
35 begin
36 if ((zx[I]̂zx[m-1])==1'b1)
37 temp = 1'b1;
38 end
39 OV = temp;
40 end
41
42 always @(OV,zx)
43 case (OV)
44 1'b0: z = zx[m-1:0];
45 1'b1:
46 begin
47 if (zx[mx-1]==1'b0)
48 z = {1'b0,{(m-1){1'b1}}};
49 else
50 z = {1'b1,{(m-1){1'b0}}};
51 end
52 endcase
53
54 endmodule

Overflow check is implemented by the for loop contained in the always statement
in line 42.
Similarly, Verilog code for a combinational saturated multiplier is

1 module saturated_multiplier(x,y,z,OV);
2
3 parameter n;
4 parameter p;
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5 parameter m; // Assuming m <= n+p
6
7 input signed [n-1:0] x; // [n,q]
8 input signed [p-1:0] y; // [p,l]
9 output reg [m-1:0] z; // [m,q+l]

10
11 output reg OV;
12
13 wire signed [n+p-1:0] zx;
14 assign zx = x*y;
15
16 reg temp;
17 integer I;
18 always @(zx)
19 begin
20 temp = 1'b0;
21 for (I=m;I<=n+p-1;I=I+1)
22 begin
23 if ((zx[I]̂zx[m-1])==1'b1)
24 temp = 1'b1;
25 end
26 OV = temp;
27 end
28
29 always @(OV,zx)
30 case (OV)
31 1'b0: z = zx[m-1:0];
32 1'b1:
33 begin
34 if (zx[n+p-1]==1'b0)
35 z = {1'b0,{(m-1){1'b1}}};
36 else
37 z = {1'b1,{(m-1){1'b0}}};
38 end
39 endcase
40
41 endmodule



A P P E N D I X C
SMALL-SIGNAL PHASE LAG OF
UNIFORMLY SAMPLED PULSE
WIDTH MODULATORS

The small-signal delay associated with uniformly sampled pulse width modulators
(USPWMs), which are typically employed in digital controllers, is introduced in
Section 2.5.2. This modulation delay is an important contribution to the total loop
delay in digitally controlled converters. This appendix presents a proof for the results
given in (2.27) and summarized in Table 2.1.

C.1 TRAILING-EDGE MODULATORS

Referring to a trailing-edge uniformly sampled modulator (TE-USPWM), the proof
closely follows the derivation originally presented in [126]. A more general cal-
culation of the PWM spectrum for both naturally sampled and uniformly sampled
modulators can be found in [186].

Figure C.1 reports the main waveforms of a TE-USPWM. The input modulat-
ing signal u[k] has sampling period Ts equal to the switching period and is assumed
to be updated at the beginning of every switching cycle.

In steady-state operation with a constant input modulating signal U , the mod-
ulator output cs(t) is a square wave having duty cycle

D =
U

Nr

, (C.1)

where Nr denotes the carrier amplitude.
Consider now a sinusoidal perturbation û[k] superimposed to U ,

u[k] = U + û[k] = U + ûm sin (ωkTs + ϕ), (C.2)

which produces a corresponding perturbation ĉ(t) in the output PWM command,

c(t) = cs(t) + ĉ(t). (C.3)

Digital Control of High-Frequency Switched-Mode Power Converters, First Edition.
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c(t)

u[k]

Ts
t

t

t

d[k]Ts

U

0

0

0

T = NTs

ûm

ûm/Nr

DTs
d̂(t)

Figure C.1 Waveforms of a TE-USPWM for N = 20, L = 1.

Suppose also that the perturbation frequency ω and the switching rate ωs are com-
mensurable,

ωs

ω
=

fs

f
=

T

Ts

=
N

L
, L,N ∈ Z

+. (C.4)

This assumption is equivalent to assuming that û[k] is periodic with period Tp =
NTs = LT . Although not strictly necessary, such assumption allows the derivation
to proceed using Fourier series and summations rather than transforms and integrals.
Furthermore, given the density of the rational set Q within the real set R, any ratio
fs/f can be approximated arbitrarily well by a fraction. In Fig. C.1, the case N = 20,
L = 1 is exemplified.

The small-signal frequency response GPWM ,TE (jω) to be determined is
defined as the ratio between the Fourier components c(ω) and u(ω) of c and u at the
perturbation frequency ω, in the small-signal limit [126, 187],

GPWM ,TE (jω) � lim
ûm→0

c(ω)
u(ω)

. (C.5)

The time-domain counterpart of c(ω) is illustrated in Fig. C.1 and is denoted with
d̂(t).
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The quantity u(ω) can be derived directly from the definition (C.2),

u(ω) =
ûm

2j
ejϕ. (C.6)

Evaluation of c(ω), on the other hand, is carried out via a Fourier analysis of c(t).
During the kth switching interval, the modulated signal c(t) is defined as

c(t) =
{

1, kTs < t < kTs + d[k]Ts,
0, kTs + d[k]Ts < t < (k + 1)Ts,

(C.7)

where d[k] = u[k]/Nr is the duty cycle. Observe that c(t) has the same periodicity
Tp = NTs = LT as u[k] and can therefore be expanded as

c(t) =
+∞∑

n=−∞
c(nωp)e

jnωpt, (C.8)

where ωp = 2π/Tp and where c(nωp) is the Fourier coefficient of c,

c(nωp) =
1
Tp

∫ Tp

0
c(τ)e−jnωpτdτ. (C.9)

As f = L/Tp = Lfp, the harmonic component of c(t) to be evaluated is that of order
L,1

c(ω) = c(Lωp) =
1
Tp

∫ Tp

0
c(τ)e−jLωpτdτ =

1
NTs

∫ NTs

0
c(τ)e−jωτdτ. (C.10)

The above-mentioned integral can be expressed in terms of the contributions from
each switching cycle,

c(ω) =
1

NTs

k=N−1∑
k=0

∫ (k+1)Ts

kTs

c(τ)e−jωτdτ. (C.11)

By considering (C.7),

c(ω) =
1

NTs

k=N−1∑
k=0

∫ (k+d[k])Ts

kTs

e−jωτdτ. (C.12)

1It can be shown that, in the limit as ûm → 0 considered here, the Lth harmonic is the only nonvanishing
Fourier component in the range [0, ωs/2].
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Evaluating the integrals explicitly yields

c(ω) =
1

NTs

k=N−1∑
k=0

[
e−jωτ

−jω

]τ=(k+d[k])Ts

τ=kTs

=
1

jωNTs

k=N−1∑
k=0

e−jωkTs(1 − e−jωd[k]Ts), (C.13)

which is an exact large-signal result.
Introduce, at this point, the small-signal assumption by substituting the expo-

nential term containing d[k] with its first-order Taylor approximation around d = D,

e−jωdTs ≈ e−jωDTs +
∂e−jωdTs

∂d

∣∣∣∣
d=D

(d − D)

= e−jωDTs − jωTse
−jωDTs d̂, (C.14)

with d̂ � d − D. Substituting such approximation into (C.13) yields

c(ω) =
1

jωNTs

k=N−1∑
k=0

e−jωkTs

(
1 − e−jωDTs

(
1 − jωTsd̂[k]

))
. (C.15)

Write now the above-mentioned result as the sum of two terms,

c(ω) =
1

jωNTs

(
1 − e−jωDTs

) k=N−1∑
k=0

e−jωkTs

+
1

jωNTs

jωTse
−jωDTs

k=N−1∑
k=0

e−jωkTs d̂[k], (C.16)

and examine them separately. The first term vanishes, as

k=N−1∑
k=0

e−jωkTs = 0 (C.17)

for any ω that is not a multiple of ωs. The expression for c(ω) therefore simplifies to

c(ω) =
e−jωDTs

N

k=N−1∑
k=0

e−jωkTs d̂[k]. (C.18)

From (C.2) and d[k] = u[k]/Nr, it follows that

d̂[k] =
ûm

Nr

sin(kωTs + ϕ) =
ûm

Nr

(
ej(ωkTs+ϕ) − e−j(ωkTs+ϕ)

2j

)
, (C.19)
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which leads to

u(ω) =
e−jωDTs

N

ûm

2jNr

ejϕ
k=N−1∑

k=0

(
1 − e−2j(ωkTs+ϕ)

)
. (C.20)

As the summation
k=N−1∑

k=0

e−2jωkTs (C.21)

vanishes for any ω that is not a multiple of ωs/2, the expression of c(ω) reduces to

c(ω) =
e−jωDTs

Nr

ûm

2j
ejϕ. (C.22)

Finally, the desired result is obtained from (C.5), (C.6), and (C.22),

GPWM ,TE (jω) =
1

Nr

e−jωDTs , (C.23)

which is valid for 0 < ω < ωs/2. As anticipated, such frequency response describes
a transport delay tDPWM = DTs. The result is the TE-USPWM entry in Table 2.1.

As a final remark, and according to (1.87) of Section 1.6, the duty cycle d(t),
which determines the averaged dynamics of the converter, is just the baseband com-
ponent of c(ω),

d(t) =
U

Nr︸︷︷︸
D

+
ûm

Nr

sin(ω (t − DTs) + ϕ)︸ ︷︷ ︸
d̂(t)

. (C.24)

C.2 LEADING-EDGE MODULATORS

The above-mentioned calculation, developed for a trailing-edge modulator example,
can be readily adapted to the leading-edge case by replacing (C.7) with

c(t) =
{

0, kTs < t < kTs + (1 − d[k]) Ts,
1, kTs + (1 − d[k]) Ts < t < (k + 1)Ts,

(C.25)

which expresses the relationship between c(t) and d[k] in a leading-edge modulator.
With this modification, the modulator small-signal frequency response is found to be

GPWM ,LE (jω) =
1

Nr

e−jω(1−D)Ts , (C.26)

which is associated with a small-signal transport delay tDPWM = (1 − D) Ts. The
result is reported in the second entry of Table 2.1.
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Figure C.2 Decomposition of a symmetrical modulation into trailing-edge modulations.

C.3 SYMMETRICAL MODULATORS

For a symmetrical modulator, dependence of c(t) on d[k] is expressed as

c(t) =

⎧⎪⎨
⎪⎩

0, kTs < t < kTs + (1 − d[k]) Ts

2 ,

1, kTs + (1 − d[k]) Ts

2 < t < kTs + (1 + d[k]) Ts

2 ,

0, kTs + (1 + d[k]) Ts

2 < t < (k + 1)Ts.

(C.27)

Once (C.7) is replaced with (C.27), the small-signal frequency response of the sym-
metrical modulator can be derived.

A quicker approach to the derivation of the symmetrical modulator frequency
response, which is applicable once the small-signal result (C.23) is known, is to think
of the symmetrical modulation as a combination of two trailing-edge submodula-
tions, as depicted in Fig. C.2. The symmetrical carrier r(t) is decomposed into two
trailing-edge carriers r1(t) and r2(t), against which the modulating signal u[k] is
compared to produce modulated signals c1(t) and c2(t). Symmetrically modulated
signal c(t) is then evaluated as

c(t) = c1(t) − c2(t). (C.28)

Because of the linearity of the foregoing equation, one necessarily has that

GPWM ,Sym(jω) = GPWM ,1 (jω) − GPWM ,2 (jω), (C.29)

where GPWM ,1 (jω) and GPWM ,2 (jω) frequency responses associated with c1(t) and
c2(t), respectively. These can be both derived from (C.23) after noting that

1. Slopes of r1(t) and r2(t) are, in absolute value, equal to 2Nr/Ts, whereas in
the standard trailing-edge modulation, the carrier slope is Nr/Ts. Hence, the
static small-signal gain associated with the two submodulations is halved with
respect to the standard trailing-edge case.
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2. The static differential gain associated with GPWM ,2 (jω) is negative, as duty
cycle of c2(t) decreases as the modulating signal increases.

With the above-mentioned remarks in mind, (C.29) becomes

GPWM ,Sym(jω) =
1

2Nr

e−jω 1+D
2 Ts −

(
− 1

2Nr

)
e−jω 1−D

2 Ts

=
1

2Nr

(
ejωD Ts

2 + ejωD Ts
2

)
e−jω Ts

2 , (C.30)

and therefore

GPWM ,Sym(jω) =
1

Nr

cos
(

ωDTs

2

)
e−jω Ts

2 , (C.31)

which is the result reported in the last entry of Table 2.1. The small-signal transport
delay associated with (C.31) is tDPWM = Ts/2, independent of the operating point.
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[83] K. Åström and T. Hägglund, “Automatic tuning of simple regulators with
specifications on phase and amplitude margins,” Automatica, vol. 20, no. 5,
pp. 645–651, 1984.

[84] A. Leva, “PID autotuning algorithm based on relay feedback,” IEE Proc. Con-
trol Theory Appl., vol. 140, no. 5, pp. 328–338, Sept. 1993.
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[94] Z. Lukić, Z. Zhao, S. Ahsanuzzaman and A. Prodić, “Self-tuning digital cur-
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Bilinear transform, 119–121

definition and properties, 120, 121
design method, 122
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signal notation, 296
truncation, 302

Capacitor charge (ampere-second) balance,
16, 18, 29, 50

Coefficients
quantization, 192, 200
scaling, 198
vector, 191, 194

Compensator
absolute sensitivity function, 201, 203,

204, 207, 210, 211
anti-windup provisions, 160
coefficients quantization, 192, 200
coefficients scaling, 198
continuous-time, 36, 59
conversion from p-domain to z-domain,

196
design, continuous-time, 32
design, discrete-time, 126
discrete-time, 58
fixed-point implementation, 213
PID structures

cascade, 195, 208, 229
direct, 194, 206, 225
parallel, 194, 204, 220
programmable, 243, 244, 246, 247

relative sensitivity function, 201, 204,
205, 207, 208, 210–212

transfer function, p-domain, 124
transfer function, continuous-time, 36, 44,
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transfer function, discrete-time, 60, 61
verilog coding, 237
vhdl coding, 235

Continuous conduction mode, 17
Crossover frequency, 13, 119, 122
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Delay, 51
A/D conversion, 53, 65
computational, 58, 65
control, 65, 70
loop, 65, 70
modulation, 65, 66, 69, 70, 79

Difference equations, 277
forced response, 278
free response, 279
modes, 281

Digital autotuning see Autotuning, 241
Digital control

average current-mode control, 97, 134
hardware-based vs. software-based, 65,

191
multiloop control, 136
power factor correction, 141
system and performance gains, 8
voltage-mode, 52, 71, 90, 112, 126, 167,

218
Digital pulse width modulator

counter-based architecture, 63, 183
delay-line architecture, 184
duty cycle resolution, 64, 169
hybrid architecture, 185
quantization characteristic, 65
time resolution, 64
with ΣΔ modulation, 187

Discontinuous conduction mode, 17, 56
Discrete-time modeling, 80

examples, 88
for basic types of PWM modulation, 87
of time-invariant topologies, 102

Discretization, 58, 59, 79
backward euler, 59, 60
impulse-invariant, 105
using Matlab®, 111
tustin, 60, 61

DPWM see Digital pulse width modulator,
169

Duty cycle
definition, 14
discrete-time vs. continuous-time, 48
quantization, 64, 65
resolution, 64, 169

Dynamic range, 214
definition, 214, 215

Effective dynamic range see Dynamic range,
214

Efficiency optimization, 12
Example

boost converter
analog average current-mode control,
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digital average current-mode control,

97, 134
digital power factor correction, 141
parameters, 43, 145
state-space averaging, 30
steady-state analysis, 17

buck converter
analog voltage-mode control, 32
digital multiloop control, 136
digital voltage-mode control, 71, 90,

112, 126
parameters, 33

use of Matlab® see Matlab® example, 93
verilog coding see Verilog example, 237
vhdl coding see VHDL example, 235

Fixed-point
arithmetic, 193
binary two’s complement representation,

294
implementation, 193, 213

cascade PID structure, 232
direct PID structure, 228
parallel PID structure, 224
voltage-mode control, 218

vs. floating-point arithmetic, 293
Frequency response

of a linear discrete-time system, 288
on-line identification, 9

Gain margin, 13, 119

Hardware dynamic range see Dynamic
range, 215

Impulse response
of a linear discrete-time system, 279, 289
of a switched inductor, 83
of a time-invariant topology, 103
of an integral digital compensator, 179

Inductor volt-second balance, 16, 18, 29, 50

Laplace-transform, 30, 69, 106, 108
Limit cycling, 167

due to DPWM vs. A/D resolution, 175
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due to the integral gain, 178
no-limit-cycling conditions, 167, 175,

176, 180
Linear-ripple approximation, 17, 22, 28, 50
Loop gain, 13

definition, continuous-time, 26
definition, discrete-time, 120
effective, 75, 77, 156
simulation, 38–40, 130
uncompensated, continuous-time, 26
uncompensated, discrete-time, 120

calculation, 108
closed-form expressions, 110
relationship with the modified

z-transform, 108

Matlab® example
B2C round-off, 295
compensator design, 132
discrete-time modeling

boost converter, 100
buck converter, 93
general-purpose script, 114
of basic converters, 112

evaluation of the sensitivity function,
211

impulse-invariant discretization, 111

No-limit-cycling conditions see Limit
cycling, 167

PFC see Power factor correction, 141
Phase margin, 13, 119

uncompensated, 128
Power factor correction, 141
Pulse width modulation

delay, 65, 66, 69, 70, 79, 313
digital, 63, 182
dirac approximation, 69, 104, 105
frequency response, 25, 67, 69, 313
leading-edge, 69, 89
modeling, 24
naturally sampled, 24
of converters, 14
symmetrical, 42, 69, 89
trailing-edge, 21, 69, 88
uniformly sampled, 24, 67, 313

Quantization
due to the A/D converter, 56, 167

due to the DPWM, 169
interval, 58
of compensator coefficients, 192, 200

Sampling
effects see Aliasing, 51
inherent to pulse width modulation, 24
rate selection, 52, 53

Sensitivity function
absolute, 201, 203, 204, 207, 210, 211
definition, 201
evaluation using Matlab®, 211
relative, 201, 204, 205, 207, 208, 210–212

Signal notation, 296
Small-aliasing approximation see Aliasing,

76
Small-ripple approximation, 16–20, 22, 28,

50, 144
Small-signal

averaged modeling, 22, 29
of basic converters, 26
of digitally controlled converters, 74

converter transfer functions, 154
delay, 65, 66, 70
discrete-time modeling, 80, 87, 102

State-space
averaging, 28
equations of a converter, 28, 80
model of a linear discrete-time system,

288
Steady-state, 16

operating point, averaged modeling, 28
operating point, discrete-time modeling,

80
solution in presence of quantizations, 172,

175
Switched inductor, 82

Time quantization, 6, 51
Time-invariant topologies, 102
Timing diagram, 58, 66, 67
Transfer function

audiosusceptibility, 155
control-to-inductor current, 32, 44, 45, 82,

85, 93, 95–97, 101
control-to-output voltage, 23, 32, 82, 93,

94, 106, 112
evaluation using Matlab®, 93, 100, 111,

114
input impedance, 159
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Transfer function (Continued)
matrix, 32, 82, 114
of a linear discrete-time system, 287
of the effective plant, 94
of the pulse width modulator, 25
output impedance, 40, 41, 155
sensing, 21, 52

Verilog example
addition and subtraction, 305
compensator coding, 237
continuous assignment, 298
multiplication, 306
saturated addition and multiplication,

310
sign extension, 300
sign reversal, 302

VHDL example
addition and subtraction, 305
compensator coding, 235
concurrent statement, 298
multiplication, 306
saturated addition and multiplication, 308
sign extension, 300
sign reversal, 301
truncation, 303

Voltage conversion ratio, 19
of basic converters, 20

Z-transform, 105, 106, 108, 109, 123, 284
definition, 284
modified, 108
properties, 285

Zero-error bin, 58, 168
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